Murat Bastepe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3661350/publications.pdf

Version: 2024-02-01

76322 79691 5,542 95 40 73 citations h-index g-index papers 132 132 132 3777 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nature Genetics, 2006, 38, 1248-1250.	21.4	487
2	SLC34A3 Mutations in Patients with Hereditary Hypophosphatemic Rickets with Hypercalciuria Predict a Key Role for the Sodium-Phosphate Cotransporter NaPi-IIc in Maintaining Phosphate Homeostasis. American Journal of Human Genetics, 2006, 78, 179-192.	6.2	422
3	Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type lb. Nature Genetics, 2005, 37, 25-27.	21.4	321
4	Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. Journal of Clinical Investigation, 2003, 112, 1255-1263.	8.2	226
5	Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nature Reviews Endocrinology, 2018, 14, 476-500.	9.6	224
6	Paternal Uniparental Isodisomy of Chromosome 20q—and the Resulting Changes in GNAS1 Methylation—as a Plausible Cause of Pseudohypoparathyroidism. American Journal of Human Genetics, 2001, 68, 1283-1289.	6.2	198
7	A Novel STX16 Deletion in Autosomal Dominant Pseudohypoparathyroidism Type Ib Redefines the Boundaries of a cis-Acting Imprinting Control Element of GNAS. American Journal of Human Genetics, 2005, 76, 804-814.	6.2	185
8	Epigenetic Defects ofGNASin Patients with Pseudohypoparathyroidism and Mild Features of Albright's Hereditary Osteodystrophy. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2370-2373.	3.6	157
9	GNAS Spectrum of Disorders. Current Osteoporosis Reports, 2015, 13, 146-158.	3.6	147
10	<i>GNAS</i> Locus and Pseudohypoparathyroidism. Hormone Research in Paediatrics, 2005, 63, 65-74.	1.8	144
11	Stimulatory G protein directly regulates hypertrophic differentiation of growth plate cartilage <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14794-14799.	7.1	141
12	The GNAS Locus and Pseudohypoparathyroidism. Advances in Experimental Medicine and Biology, 2008, 626, 27-40.	1.6	131
13	A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. Journal of Clinical Investigation, 2005, 115, 1250-1257.	8.2	129
14	Receptor-Mediated Adenylyl Cyclase Activation Through XLαs, the Extra-Large Variant of the Stimulatory G Protein α-Subunit. Molecular Endocrinology, 2002, 16, 1912-1919.	3.7	128
15	Deletion of the Noncoding <i>GNAS </i> Antisense Transcript Causes Pseudohypoparathyroidism Type Ib and Biparental Defects of <i <="" gnas="" i="">Methylation <i>in cis </i>Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3993-4002.</i>	3.6	113
16	Dosage-dependent switch from G protein-coupled to G protein-independent signaling by a GPCR. EMBO Journal, 2007, 26, 53-64.	7.8	103
17	Identification and Functional Characterization of Novel Calcium-Sensing Receptor Mutations in Familial Hypocalciuric Hypercalcemia and Autosomal Dominant Hypocalcemia. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1309-1318.	3.6	102
18	Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at the <i>GNAS</i> locus. Clinical Endocrinology, 2007, 67, 822-831.	2.4	98

#	Article	IF	CITATIONS
19	Gsl± enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. Journal of Clinical Investigation, 2011, 121, 3492-3504.	8.2	91
20	Identification and Characterization of Two Parathyroid Hormone-Like Molecules in Zebrafish. Endocrinology, 2004, 145, 1634-1639.	2.8	83
21	Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation. Reviews in Endocrine and Metabolic Disorders, 2008, 9, 171-180.	5.7	78
22	Mechanisms of Ligand Binding to the Parathyroid Hormone (PTH)/PTH-Related Protein Receptor: Selectivity of a Modified PTH(1–15) Radioligand for GαS-Coupled Receptor Conformations. Molecular Endocrinology, 2006, 20, 931-943.	3.7	73
23	Molecular Diagnosis and Clinical Characterization of Pseudohypoparathyroidism Type-Ib in a Patient With Mild Albright's Hereditary Osteodystrophy-Like Features, Epileptic Seizures, and Defective Renal Handling of Uric Acid. American Journal of the Medical Sciences, 2008, 336, 84-90.	1.1	73
24	Paternal uniparental isodisomy of the entire chromosome 20 as a molecular cause of pseudohypoparathyroidism type lb (PHP-lb). Bone, 2011, 48, 659-662.	2.9	67
25	Postnatal Establishment of Allelic Gî±s Silencing as a Plausible Explanation for Delayed Onset of Parathyroid Hormone Resistance Owing to Heterozygous Gî±s Disruption. Journal of Bone and Mineral Research, 2014, 29, 749-760.	2.8	64
26	Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively $Gs\hat{l}$ ±-receptor interaction. Human Mutation, 2011, 32, 653-660.	2.5	62
27	The <i>GNAS</i> Complex Locus and Human Diseases Associated with Loss-of-Function Mutations or Epimutations within This Imprinted Gene. Hormone Research in Paediatrics, 2013, 80, 229-241.	1.8	60
28	The β-blocker Nebivolol Is a GRK/Ĩ²-arrestin Biased Agonist. PLoS ONE, 2013, 8, e71980.	2.5	58
29	CodingGNASMutations Leading to Hormone Resistance Impairin VitroAgonist- and Cholera Toxin-Induced Adenosine Cyclic 3′,5′-Monophosphate Formation Mediated by Human XLαs. Endocrinology, 2006, 147, 2253-2262.	2.8	56
30	Targeted deletion of the Nesp55 DMR defines another <i>Gnas</i> imprinting control region and provides a mouse model of autosomal dominant PHP-lb. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9275-9280.	7.1	55
31	Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone, 2010, 46, 402-409.	2.9	55
32	A rapid microarray based whole genome analysis for detection of uniparental disomy. Human Mutation, 2005, 26, 153-159.	2.5	53
33	Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel <i>DMP1</i> mutation. Journal of Bone and Mineral Research, 2010, 25, 2165-2174.	2.8	53
34	A Form of Jansen's Metaphyseal Chondrodysplasia with Limited Metabolic and Skeletal Abnormalities Is Caused by a Novel Activating Parathyroid Hormone (PTH)/PTH-Related Peptide Receptor Mutation. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3595-3600.	3.6	50
35	Phenotypic and Molecular Genetic Aspects of Pseudohypoparathyroidism Type Ib in a Greek Kindred: Evidence for Enhanced Uric Acid Excretion Due to Parathyroid Hormone Resistance. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5942-5947.	3.6	50
36	The GNAS Locus: Quintessential Complex Gene Encoding Gsα, XLαs, and other Imprinted Transcripts. Current Genomics, 2007, 8, 398-414.	1.6	50

#	Article	IF	CITATIONS
37	PSEUDOHYPOPARATHYROIDISM. Endocrinology and Metabolism Clinics of North America, 2000, 29, 569-589.	3.2	49
38	Molecular Diagnosis of Pseudohypoparathyroidism Type Ib in a Family With Presumed Paroxysmal Dyskinesia. Pediatrics, 2005, 115, e242-e244.	2.1	48
39	Potent constitutive cyclic AMP-generating activity of XLαs implicates this imprinted GNAS product in the pathogenesis of McCune–Albright Syndrome and fibrous dysplasia of bone. Bone, 2011, 48, 312-320.	2.9	44
40	The Long Cytoplasmic Carboxyl Terminus of the Prostaglandin E ₂ Receptor EP ₄ Subtype Is Essential for Agonist-Induced Desensitization. Molecular Pharmacology, 1997, 51, 343-349.	2.3	42
41	Recommendations for Diagnosis and Treatment of Pseudohypoparathyroidism and Related Disorders: An Updated Practical Tool for Physicians and Patients. Hormone Research in Paediatrics, 2020, 93, 182-196.	1.8	42
42	Parathyroid hormone signaling via $G\hat{l}\pm s$ is selectively inhibited by an NH2-terminally truncated $G\hat{l}\pm s$: Implications for pseudohypoparathyroidism. Journal of Bone and Mineral Research, 2011, 26, 2473-2485.	2.8	39
43	Intragenic <i>GNAS</i> Deletion Involving Exon A/B in Pseudohypoparathyroidism Type 1A Resulting in an Apparent Loss of Exon A/B Methylation: Potential for Misdiagnosis of Pseudohypoparathyroidism Type 1B. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 765-771.	3.6	38
44	GNAS mutations and heterotopic ossification. Bone, 2018, 109, 80-85.	2.9	37
45	Pseudohypoparathyroidism and Mechanisms of Resistance toward Multiple Hormones: Molecular Evidence to Clinical Presentation. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4055-4058.	3.6	35
46	Exclusion of the <i>GNAS</i> locus in PHP-Ib patients with broad <i>GNAS</i> methylation changes: Evidence for an autosomal recessive form of PHP-Ib?. Journal of Bone and Mineral Research, 2011, 26, 1854-1863.	2.8	34
47	Extralarge XLαs (XXLαs), a Variant of Stimulatory G Protein α-Subunit (Gsα), Is a Distinct, Membrane-Anchored GNAS Product that Can Mimic Gsα. Endocrinology, 2009, 150, 3567-3575.	2.8	32
48	<i>De Novo</i> STX16 Deletions: An Infrequent Cause of Pseudohypoparathyroidism Type Ib that Should Be Excluded in Sporadic Cases. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E2314-E2319.	3.6	32
49	Lack of Gnas Epigenetic Changes and Pseudohypoparathyroidism Type Ib in Mice with Targeted Disruption of Syntaxin-16. Endocrinology, 2007, 148, 2925-2935.	2.8	30
50	Evidence of hormone resistance in a pseudo-pseudohypoparathyroidism patient with a novel paternal mutation in GNAS. Bone, 2015, 71, 53-57.	2.9	29
51	Secondary ossification center induces and protects growth plate structure. ELife, 2020, 9, .	6.0	29
52	Identification of a region of the Câ€terminal domain involved in shortâ€term desensitization of the prostaglandin EP ₄ receptor. British Journal of Pharmacology, 1999, 126, 365-371.	5.4	28
53	Osteosclerosis in two brothers with autosomal dominant pseudohypoparathyroidism type 1b: bone histomorphometric analysis. European Journal of Endocrinology, 2011, 164, 295-301.	3.7	28
54	Heterotrimeric G proteins in the control of parathyroid hormone actions. Journal of Molecular Endocrinology, 2017, 58, R203-R224.	2.5	28

#	Article	IF	CITATIONS
55	Transgenic Overexpression of the Extra-Large Gsî± Variant XLαs Enhances Gsî±-Mediated Responses in the Mouse Renal Proximal Tubule in Vivo. Endocrinology, 2011, 152, 1222-1233.	2.8	27
56	Extra-long Gαs Variant XLαs Protein Escapes Activation-induced Subcellular Redistribution and Is Able to Provide Sustained Signaling. Journal of Biological Chemistry, 2011, 286, 38558-38569.	3.4	26
57	Different Mutations Within or Upstream of the GNAS Locus Cause Distinct Forms of Pseudohypoparathyroidism. Journal of Pediatric Endocrinology and Metabolism, 2006, 19, 641-6.	0.9	25
58	Genetics and Epigenetics of Parathyroid Hormone Resistance. Endocrine Development, 2013, 24, 11-24.	1.3	25
59	The G protein α subunit variant XLα _s promotes inositol 1,4,5-trisphosphate signaling and mediates the renal actions of parathyroid hormone in vivo. Science Signaling, 2015, 8, ra84.	3.6	23
60	Loss of XLαs (extra-large αs) imprinting results in early postnatal hypoglycemia and lethality in a mouse model of pseudohypoparathyroidism lb. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6638-6643.	7.1	19
61	Autosomal-Dominant Pseudohypoparathyroidism Type Ib is Caused by Different Microdeletions Within or Upstream of the GNAS Locus. Annals of the New York Academy of Sciences, 2006, 1068, 250-255.	3.8	18
62	D2 dopamine receptor-induced sensitization of adenylyl cyclase type 1 is $\hat{\text{Gl}}\pm \text{s}$ independent. Neuropharmacology, 2006, 50, 576-584.	4.1	16
63	A G protein–coupled, IP3/protein kinase C pathway controlling the synthesis of phosphaturic hormone FGF23. JCI Insight, 2019, 4, .	5.0	16
64	Characterization of the molecular mechanisms of the coupling between intracellular loops of prostacyclin receptor with the C-terminal domain of the Gl±s protein in human coronary artery smooth muscle cells. Archives of Biochemistry and Biophysics, 2006, 454, 80-88.	3.0	12
65	<i>NHERF1</i> Mutations and Responsiveness of Renal Parathyroid Hormone. New England Journal of Medicine, 2008, 359, 2615-2617.	27.0	11
66	Huntington Disease: Molecular Diagnostics Approach. Current Protocols in Human Genetics, 2015, 87, 9.26.1-9.26.23.	3.5	11
67	Ablation of the Stimulatory G Protein α-Subunit in Renal Proximal Tubules Leads to Parathyroid Hormone-Resistance With Increased Renal Cyp24a1 mRNA Abundance and Reduced Serum 1,25-Dihydroxyvitamin D. Endocrinology, 2016, 157, 497-507.	2.8	10
68	Large G protein α-subunit XLαs limits clathrin-mediated endocytosis and regulates tissue iron levels in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9559-E9568.	7.1	9
69	Pseudohypoparathyroidism, Gsα, and the GNAS locus. BoneKEy Osteovision, 2005, 2, 20-32.	0.6	6
70	Constitutive stimulatory G protein activity in limb mesenchyme impairs bone growth. Bone, 2018, 110, 230-237.	2.9	6
71	Recessive versus imprinted disorder: consanguinity can impede establishing the diagnosis of autosomal dominant pseudohypoparathyroidism type lb. European Journal of Endocrinology, 2010, 163, 489-493.	3.7	5
72	A novel deletion involving GNAS exon 1 causes PHP1A and further refines the region required for normal methylation at exon A/B. Bone, 2017, 103, 281-286.	2.9	5

#	Article	IF	Citations
73	Parathyroid Disorders., 2003,, 485-508.		5
74	Pseudohypoparathyroidism, Albright's Hereditary Osteodystrophy, and Progressive Osseous Heteroplasia., 2010, , 1223-1235.		5
75	Severe brachydactyly and short stature resulting from a novel pathogenic TRPS1 variant within the GATA DNA-binding domain. Bone, 2019, 123, 153-158.	2.9	4
76	Extra-Large Gα Protein (XLαs) Deficiency Causes Severe Adenine-Induced Renal Injury with Massive FGF23 Elevation. Endocrinology, 2020, 161, .	2.8	4
77	Maternal GNAS Contributes to the Extra-Large G Protein α-Subunit (XLαs) Expression in a Cell Type-Specific Manner. Frontiers in Genetics, 2021, 12, 680537.	2.3	4
78	A Novel T55A Variant of G $<$ sub $>$ s $<$ /sub $><$ i $>$ î \pm Associated with Impaired cAMP Production, Bone Fragility, and Osteolysis. Case Reports in Endocrinology, 2016, 2016, 1-6.	0.4	3
79	Sporadic Pseudohypoparathyroidism Type 1B in Monozygotic Twins: Insights Into the Pathogenesis of Methylation Defects. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e947-e954.	3.6	3
80	A naturally occurring membrane-anchored \widehat{Gl} s variant, $XL\widehat{I}$ s, activates phospholipase \widehat{Cl}^2 4. Journal of Biological Chemistry, 2022, 298, 102134.	3.4	3
81	Haplotype frequencies and linkage disequilibrium analysis of four frequent polymorphisms at the PTH/PTH-related peptide receptor gene locus. Molecular and Cellular Probes, 2004, 18, 353-357.	2.1	2
82	A Gain-of-Function CASR Mutation Causing Hypocalcemia in a Recessive Manner. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3514-3515.	3.6	2
83	Parathyroid Disorders. , 2012, , 557-588.		1
84	Pseudohypoparathyroidism, Albright's Hereditary Osteodystrophy, and Progressive Osseous Heteroplasia. , 2016, , 1147-1159.e6.		1
85	GNAS Complex Locus. , 2018, , 2173-2185.		1
86	Parathyroid Disorders., 2013,, 1-34.		0
87	Sporadic Pseudohypoparathyroidism 1B in Monozygotic Twins: Insights Into the Pathogenesis of Methylation Defects. Journal of the Endocrine Society, 2021, 5, A224-A224.	0.2	0
88	$XL\hat{l}_{\pm}$ s is a novel activator of PLC \hat{l}^2 4. FASEB Journal, 2021, 35, .	0.5	0
89	G Proteinâ€Coupled Receptor Kinase 4γ (GRK4γ) Interacts with the Alpha Helical Domain of Gα s. FASEB Journal, 2009, 23, .	0.5	0
90	The interaction of G proteinâ \in coupled receptor kinase $4\hat{l}^3$ with \hat{Gl}_{\pm} s is required for inhibition of the \hat{l}^2 2 â \in AR. FASEB Journal, 2010, 24, 585.3.	0.5	0

#	Article	IF	CITATIONS
91	GNAS Complex Locus. , 2016, , 1-13.		O
92	MON-LB087 Synthesis of Osteocyte-Derived Phosphaturic Hormone FGF23 via IP3/PKC Signaling Downstream of the Extra-Large Gl± Subunit (XLl±s). Journal of the Endocrine Society, 2019, 3, .	0.2	0
93	Kinetic changes in Ga cycling can increase cAMP accumulation while decreasing G proteinâ€coupled receptor kinaseâ€mediated receptor desensitization. FASEB Journal, 2019, 33, 502.7.	0.5	0
94	Kinetic control of signaling: role of RGS proteins and GRKs. FASEB Journal, 2020, 34, 1-1.	0.5	0
95	XLαs is a novel activator of PLCβ4. FASEB Journal, 2020, 34, 1-1.	0.5	0