
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3661309/publications.pdf Version: 2024-02-01

WELMIN CHEN

#	Article	IF	CITATIONS
1	Robust relationship inference in genome-wide association studies. Bioinformatics, 2010, 26, 2867-2873.	4.1	2,328
2	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nature Genetics, 2018, 50, 524-537.	21.4	1,124
3	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
4	Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nature Genetics, 2015, 47, 381-386.	21.4	589
5	Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2012, 11, 951-962.	10.2	445
6	Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nature Communications, 2016, 7, 10023.	12.8	412
7	Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. American Journal of Human Genetics, 2018, 103, 691-706.	6.2	326
8	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	21.4	250
9	Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nature Genetics, 2015, 47, 898-905.	21.4	235
10	A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nature Genetics, 2013, 45, 690-696.	21.4	232
11	Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurology, The, 2016, 15, 174-184.	10.2	217
12	Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nature Communications, 2020, 11, 3519.	12.8	213
13	Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes. PLoS Genetics, 2014, 10, e1004517.	3.5	191
14	Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nature Genetics, 2015, 47, 1085-1090.	21.4	164
15	Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. Journal of Clinical Investigation, 2008, 118, 2620-8.	8.2	146
16	Low-frequency and common genetic variation in ischemic stroke. Neurology, 2016, 86, 1217-1226.	1.1	141
17	Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. Journal of the American Society of Nephrology: JASN, 2019, 30, 2000-2016.	6.1	135
18	Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nature Genetics, 2021, 53, 962-971.	21.4	133

#	Article	IF	CITATIONS
19	Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nature Genetics, 2018, 50, 1366-1374.	21.4	122
20	Genome-Wide Association of Body Fat Distribution in African Ancestry Populations Suggests New Loci. PLoS Genetics, 2013, 9, e1003681.	3.5	109
21	Role of Type 1 Diabetes–Associated SNPs on Risk of Autoantibody Positivity in the TEDDY Study. Diabetes, 2015, 64, 1818-1829.	0.6	108
22	Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genetics, 2017, 13, e1006719.	3.5	98
23	HLA-DRB1*07:01 is associated with a higher risk of asparaginase allergies. Blood, 2014, 124, 1266-1276.	1.4	84
24	Predicting Islet Cell Autoimmunity and Type 1 Diabetes: An 8-Year TEDDY Study Progress Report. Diabetes Care, 2019, 42, 1051-1060.	8.6	75
25	Meta-analysis of Immunochip data of four autoimmune diseases reveals novel single-disease and cross-phenotype associations. Genome Medicine, 2018, 10, 97.	8.2	73
26	Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity. Diabetes, 2018, 67, 146-154.	0.6	72
27	Genome-Wide Meta-Analysis of Homocysteine and Methionine Metabolism Identifies Five One Carbon Metabolism Loci and a Novel Association of ALDH1L1 with Ischemic Stroke. PLoS Genetics, 2014, 10, e1004214.	3.5	69
28	Dextran restores albumin-inhibited surface activity of pulmonary surfactant extract. Journal of Applied Physiology, 1999, 86, 1778-1784.	2.5	63
29	Meta-Analysis of Genome-Wide Association Studies Identifies Genetic Risk Factors for Stroke in African Americans. Stroke, 2015, 46, 2063-2068.	2.0	63
30	A method to decipher pleiotropy by detecting underlying heterogeneity driven by hidden subgroups applied to autoimmune and neuropsychiatric diseases. Nature Genetics, 2016, 48, 803-810.	21.4	62
31	Type 1 Diabetes Risk in African-Ancestry Participants and Utility of an Ancestry-Specific Genetic Risk Score. Diabetes Care, 2019, 42, 406-415.	8.6	62
32	A Generalized Family-Based Association Test for Dichotomous Traits. American Journal of Human Genetics, 2009, 85, 364-376.	6.2	59
33	Trans-ethnic Meta-analysis and Functional Annotation Illuminates theÂGenetic Architecture of Fasting Glucose and Insulin. American Journal of Human Genetics, 2016, 99, 56-75.	6.2	55
34	Rare and Coding Region Genetic Variants Associated With Risk of Ischemic Stroke. JAMA Neurology, 2015, 72, 781.	9.0	49
35	Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4+ Effector Memory T Cells. PLoS Genetics, 2014, 10, e1004404.	3.5	46
36	Identification of Non-HLA Genes Associated with Celiac Disease and Country-Specific Differences in a Large, International Pediatric Cohort. PLoS ONE, 2016, 11, e0152476.	2.5	46

#	Article	IF	CITATIONS
37	Identification of non-HLA genes associated with development of islet autoimmunity and type 1 diabetes in the prospective TEDDY cohort. Journal of Autoimmunity, 2018, 89, 90-100.	6.5	46
38	Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care, 2020, 43, 2066-2073.	8.6	41
39	Contrasting the Cenetic Background of Type 1 Diabetes and Celiac Disease Autoimmunity. Diabetes Care, 2015, 38, S37-S44.	8.6	39
40	Shared genetic susceptibility of vascular-related biomarkers with ischemic and recurrent stroke. Neurology, 2016, 86, 351-359.	1.1	33
41	A pan-cancer analysis of prognostic genes. PeerJ, 2015, 3, e1499.	2.0	32
42	Complement gene variants in relation to autoantibodies to beta cell specific antigens and type 1 diabetes in the TEDDY Study. Scientific Reports, 2016, 6, 27887.	3.3	31
43	Distinct Growth Phases in Early Life Associated With the Risk of Type 1 Diabetes: The TEDDY Study. Diabetes Care, 2020, 43, 556-562.	8.6	28
44	Genome-Wide Association Study Meta-Analysis of Stroke in 22 000 Individuals of African Descent Identifies Novel Associations With Stroke. Stroke, 2020, 51, 2454-2463.	2.0	26
45	Are Myocardial Infarction–Associated Single-Nucleotide Polymorphisms Associated With Ischemic Stroke?. Stroke, 2012, 43, 980-986.	2.0	25
46	HLA-DPB1*04:01 Protects Genetically Susceptible Children from Celiac Disease Autoimmunity in the TEDDY Study. American Journal of Gastroenterology, 2015, 110, 915-920.	0.4	24
47	Genetic Associations with Plasma B12, B6, and Folate Levels in an Ischemic Stroke Population from the Vitamin Intervention for Stroke Prevention (VISP) Trial. Frontiers in Public Health, 2014, 2, 112.	2.7	23
48	GRECOS Project (Genotyping Recurrence Risk of Stroke). Stroke, 2017, 48, 1147-1153.	2.0	23
49	Genetic discovery and risk characterization in type 2 diabetes across diverse populations. Human Genetics and Genomics Advances, 2021, 2, 100029.	1.7	23
50	Genetic Drivers of von Willebrand Factor Levels in an Ischemic Stroke Population and Association With Risk for Recurrent Stroke. Stroke, 2017, 48, 1444-1450.	2.0	21
51	Novel Association Between Immune-Mediated Susceptibility Loci and Persistent Autoantibody Positivity in Type 1 Diabetes. Diabetes, 2015, 64, 3017-3027.	0.6	20
52	Can Non-HLA Single Nucleotide Polymorphisms Help Stratify Risk in TrialNet Relatives at Risk for Type 1 Diabetes?. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2873-2880.	3.6	20
53	Significant linkage at chromosome 19q for otitis media with effusion and/or recurrent otitis media (COME/ROM). BMC Medical Genetics, 2011, 12, 124.	2.1	18
54	Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry. American Journal of Human Genetics, 2021, 108, 564-582.	6.2	18

#	Article	IF	CITATIONS
55	Genome-Wide Analysis of Blood Pressure Variability and Ischemic Stroke. Stroke, 2013, 44, 2703-2709.	2.0	17
56	Fine Mapping and Functional Studies of Risk Variants for Type 1 Diabetes at Chromosome 16p13.13. Diabetes, 2014, 63, 4360-4368.	0.6	17
57	Epigenome-Wide Analyses Identify Two Novel Associations With Recurrent Stroke in the Vitamin Intervention for Stroke Prevention Clinical Trial. Frontiers in Genetics, 2018, 9, 358.	2.3	12
58	Genetic landscape of Gullah African Americans. American Journal of Physical Anthropology, 2021, 175, 905-919.	2.1	9
59	Evaluation of Replication of Variants Associated with Genetic Risk of Otitis Media. PLoS ONE, 2014, 9, e104212.	2.5	8
60	Insulin resistance-associated genetic variants in type 1 diabetes. Journal of Diabetes and Its Complications, 2021, 35, 107842.	2.3	8
61	Heterogeneous longâ€ŧerm trajectories of glycaemic control in type 1 diabetes. Diabetic Medicine, 2021, 38, e14545.	2.3	6
62	Telomere length is not a main factor for the development of islet autoimmunity and type 1 diabetes in the TEDDY study. Scientific Reports, 2022, 12, 4516.	3.3	6
63	Novel genetic risk factors influence progression of islet autoimmunity to type 1 diabetes. Scientific Reports, 2020, 10, 19193.	3.3	5
64	DNA methylation analyses identify an intronic ZDHHC6 locus associated with time to recurrent stroke in the Vitamin Intervention for Stroke Prevention (VISP) clinical trial. PLoS ONE, 2021, 16, e0254562.	2.5	5
65	Multi-omic analysis of stroke recurrence in African Americans from the Vitamin Intervention for Stroke Prevention (VISP) clinical trial. PLoS ONE, 2021, 16, e0247257.	2.5	4
66	Dynamic changes in immune gene co-expression networks predict development of type 1 diabetes. Scientific Reports, 2021, 11, 22651.	3.3	3
67	Identifying Cryptic Relationships. Methods in Molecular Biology, 2017, 1666, 45-60.	0.9	2
68	Identifying variants that contribute to linkage for dichotomous and quantitative traits in extended pedigrees. BMC Proceedings, 2011, 5, S68.	1.6	1
69	HLA-DRB1*07:01 Is Associated With Asparaginase Allergies In Children With Acute Lymphoblastic Leukemia. Blood, 2013, 122, 60-60.	1.4	1
70	OP0190â€META-ANALYSIS OF IMMUNOCHIP DATA OF FOUR AUTOIMMUNE DISEASES REVEALS NOVEL SINGLE-DISEASE AND CROSS-PHENOTYPE ASSOCIATIONS. , 2019, , .		0