Marlys L Koschinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3661305/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, ATV0000000000000147.	1.1	207
2	Global think tank on the clinical considerations and management of lipoprotein(a): The top questions and answers regarding what clinicians need to know. Progress in Cardiovascular Diseases, 2022, 73, 32-40.	1.6	19
3	Apo(a) and ApoB Interact Noncovalently Within Hepatocytes: Implications for Regulation of Lp(a) Levels by Modulation of ApoB Secretion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 289-304.	1.1	17
4	Sortilin enhances secretion of apolipoprotein(a) through effects on apolipoprotein B secretion and promotes uptake of lipoprotein(a). Journal of Lipid Research, 2022, 63, 100216.	2.0	4
5	Oxidized phospholipid modification of lipoprotein(a): Epidemiology, biochemistry and pathophysiology. Atherosclerosis, 2022, 349, 92-100.	0.4	31
6	Understanding the ins and outs of lipoprotein (a) metabolism. Current Opinion in Lipidology, 2022, 33, 185-192.	1.2	12
7	Lipoprotein(a): Expanding our knowledge of aortic valve narrowing. Trends in Cardiovascular Medicine, 2021, 31, 305-311.	2.3	13
8	Lipoprotein(a). , 2021, , 547-581.		0
9	Expert position statements: comparison of recommendations for the care of adults and youth with elevated lipoprotein(a). Current Opinion in Endocrinology, Diabetes and Obesity, 2021, 28, 159-173.	1.2	22
10	Development of an LC-MS/MS Proposed Candidate Reference Method for the Standardization of Analytical Methods to Measure Lipoprotein(a). Clinical Chemistry, 2021, 67, 490-499.	1.5	40
11	A Comparative Analysis of the Lipoprotein(a) and Low-Density Lipoprotein Proteomic Profiles Combining Mass Spectrometry and Mendelian Randomization. CJC Open, 2021, 3, 450-459.	0.7	11
12	Lipoprotein Proteomics and Aortic Valve Transcriptomics Identify Biological Pathways Linking Lipoprotein(a) Levels to Aortic Stenosis. Metabolites, 2021, 11, 459.	1.3	14
13	Genetics to the Rescue. Journal of the American College of Cardiology, 2021, 78, 450-452.	1.2	2
14	Lipoprotein (a): Principles from Bench to Bedside. Contemporary Cardiology, 2021, , 363-381.	0.0	0
15	Generation and characterization of LPA-KIV9, a murine monoclonal antibody binding a single site on apolipoprotein (a). Journal of Lipid Research, 2020, 61, 1263-1270.	2.0	8
16	Interaction of Autotaxin With Lipoprotein(a) in Patients With Calcific Aortic Valve Stenosis. JACC Basic To Translational Science, 2020, 5, 888-897.	1.9	15
17	Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation. Circulation Research, 2020, 126, 1346-1359.	2.0	96
18	Potent reduction of plasma lipoprotein (a) with an antisense oligonucleotide in human subjects does	2.0	35

Marlys L Koschinsky

#	Article	IF	CITATIONS
19	Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nature Reviews Cardiology, 2019, 16, 305-318.	6.1	158
20	Lipoprotein(a) Levels and the Risk of Myocardial Infarction Among 7 Ethnic Groups. Circulation, 2019, 139, 1472-1482.	1.6	196
21	Use of Lipoprotein(a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. Journal of Clinical Lipidology, 2019, 13, 374-392.	0.6	315
22	Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients With AorticÂStenosis. Journal of the American College of Cardiology, 2019, 73, 2150-2162.	1.2	187
23	New Frontiers in Lp(a)-Targeted Therapies. Trends in Pharmacological Sciences, 2019, 40, 212-225.	4.0	39
24	Proprotein convertase subtilisin/kexin type 9 inhibitors and lipoprotein(a)-mediated risk of atherosclerotic cardiovascular disease. Current Opinion in Lipidology, 2019, 30, 428-437.	1.2	6
25	Therapeutic Lowering of Lipoprotein(a). Circulation Genomic and Precision Medicine, 2018, 11, e002052.	1.6	6
26	Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 33-54.	2.7	20
27	NHLBI Working Group Recommendations to Reduce Lipoprotein(a)-Mediated RiskÂofÂCardiovascular Disease and AorticÂStenosis. Journal of the American College of Cardiology, 2018, 71, 177-192.	1.2	337
28	The journey towards understanding lipoprotein(a) and cardiovascular disease risk: are we there yet?. Current Opinion in Lipidology, 2018, 29, 259-267.	1.2	11
29	Pathophysiology and Risk of Atrial Fibrillation Detected after Ischemic Stroke (PARADISE): A Translational, Integrated, and Transdisciplinary Approach. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 606-619.	0.7	12
30	Lipoprotein(a) and secondary prevention of atherothrombotic events: A critical appraisal. Journal of Clinical Lipidology, 2018, 12, 1358-1366.	0.6	30
31	Angelo Scanu Memorial. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1245-1246.	1.1	0
32	Inhibition of pericellular plasminogen activation by apolipoprotein(a): Roles of urokinase plasminogen activator receptor and integrins αMβ2 and αVβ3. Atherosclerosis, 2018, 275, 11-21.	0.4	6
33	Apolipoprotein(a) inhibits the conversion of Glu-plasminogen to Lys-plasminogen on the surface of vascular endothelial and smooth muscle cells. Thrombosis Research, 2018, 169, 1-7.	0.8	8
34	Apolipoprotein(a) inhibits hepatitis C virus entry through interaction with infectious particles. Hepatology, 2017, 65, 1851-1864.	3.6	10
35	The renaissance of lipoprotein(a): Brave new world for preventive cardiology?. Progress in Lipid Research, 2017, 68, 57-82.	5.3	63
36	Pathobiology of Lp(a) in calcific aortic valve disease. Expert Review of Cardiovascular Therapy, 2017, 15, 797-807.	0.6	23

MARLYS L KOSCHINSKY

#	Article	IF	CITATIONS
37	Plasminogen promotes cholesterol efflux by the ABCA1 pathway. JCI Insight, 2017, 2, .	2.3	36
38	Roles of the low density lipoprotein receptor and related receptors in inhibition of lipoprotein(a) internalization by proprotein convertase subtilisin/kexin type 9. PLoS ONE, 2017, 12, e0180869.	1.1	40
39	Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation, 2016, 134, 611-624.	1.6	396
40	Activation of liver X receptor attenuates lysophosphatidylcholineâ€induced <scp>IL</scp> â€8 expression in endothelial cells <i>via</i> the <scp>NF</scp> â€P̂B pathway and <scp>SUMO</scp> ylation. Journal of Cellular and Molecular Medicine, 2016, 20, 2249-2258.	1.6	40
41	Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease?. Journal of Lipid Research, 2016, 57, 745-757.	2.0	181
42	Lipoprotein(a) Catabolism Is Regulated by Proprotein Convertase Subtilisin/Kexin Type 9 through the Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 2015, 290, 11649-11662.	1.6	176
43	Mechanistic insights into Lp(a)-induced IL-8 expression: a role for oxidized phospholipid modification of apo(a). Journal of Lipid Research, 2015, 56, 2273-2285.	2.0	85
44	Autotaxin Derived From Lipoprotein(a) and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve. Circulation, 2015, 132, 677-690.	1.6	185
45	Inhibition of plasminogen activation by apo(a): role of carboxyl-terminal lysines and identification of inhibitory domains in apo(a). Journal of Lipid Research, 2014, 55, 625-634.	2.0	52
46	Lipoprotein(a). Endocrinology and Metabolism Clinics of North America, 2014, 43, 949-962.	1.2	27
47	Lipoprotein(a) as a therapeutic target in cardiovascular disease. Expert Opinion on Therapeutic Targets, 2014, 18, 747-757.	1.5	16
48	Determinants of binding of oxidized phospholipids on apolipoprotein (a) and lipoprotein (a). Journal of Lipid Research, 2013, 54, 2815-2830.	2.0	174
49	Lipoprotein(a). Current Opinion in Lipidology, 2012, 23, 133-140.	1.2	99
50	Mechanisms of Lipoprotein(a) Pathogenicity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1550-1551.	1.1	73
51	Oxidized Phospholipids Are Present on Plasminogen, Affect Fibrinolysis, and Increase Following Acute Myocardial Infarction. Journal of the American College of Cardiology, 2012, 59, 1426-1437.	1.2	64
52	Exon Skipping and Alternative Splicing of CPB2 mRNA in Multiple Cell Types Results in Variants of TAFI That Are Inactive and Not Secretable. Blood, 2011, 118, 1189-1189.	0.6	0
53	Apolipoprotein(a)-Dependent Inhibition of Pericellular Plasminogen Activation Is Mediated by Specific Cellular Receptors. Blood, 2011, 118, 2236-2236.	0.6	0
54	Atherogenic Lipids and Lipoproteins Trigger CD36-TLR2-Dependent Apoptosis in Macrophages Undergoing Endoplasmic Reticulum Stress. Cell Metabolism, 2010, 12, 467-482.	7.2	397

#	Article	IF	CITATIONS
55	Lipoprotein(a) Is Associated Differentially With Carotid Stenosis, Occlusion, and Total Plaque Area. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1851-1856.	1.1	66
56	Apolipoprotein(a), through Its Strong Lysine-binding Site in KIV10, Mediates Increased Endothelial Cell Contraction and Permeability via a Rho/Rho Kinase/MYPT1-dependent Pathway. Journal of Biological Chemistry, 2008, 283, 30503-30512.	1.6	54
57	Regulation of Human Thrombin-Activable Fibrinolysis Inhibitor Gene Expression in Megakaryocyte-Like (Dami) and Monocyte/Macrphage- Like (THP-1) Cell Lines. Blood, 2008, 112, 3078-3078.	0.6	0
58	Regulation of the Gene Encoding Human Thrombin-Activable Fibrinolysis Inhibitor by Female Sex Steroids. Blood, 2008, 112, 3077-3077.	0.6	0
59	A Polymorphism in the Protease-Like Domain of Apolipoprotein(a) Is Associated With Severe Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2030-2036.	1.1	143
60	Catalysis of Covalent Lp(a) Assembly:Â Evidence for an Extracellular Enzyme Activity that Enhances Disulfide Bond Formationâ€. Biochemistry, 2006, 45, 9919-9928.	1.2	23
61	Lipoprotein(a) in atherosclerotic plaques recruits inflammatory cells through interaction with Macâ€₁ integrin. FASEB Journal, 2006, 20, 559-561.	0.2	111
62	Novel Insights Into Lp(a) Physiology and Pathogenicity: More Questions Than Answers?. Cardiovascular & Hematological Disorders Drug Targets, 2006, 6, 267-278.	0.2	33
63	Lipoprotein(a) and atherosclerosis: New perspectives on the mechanism of action of an enigmatic lipoprotein. Current Atherosclerosis Reports, 2005, 7, 389-395.	2.0	41
64	Baboon Lipoprotein(a) Binds Very Weakly to Lysineâ^'Agarose and Fibrin Despite the Presence of a Strong Lysine-Binding Site in Apolipoprotein(a) Kringle IV Type 10. Biochemistry, 2005, 44, 555-564.	1.2	14
65	Quantitative Evaluation of the Contribution of Weak Lysine-binding Sites Present within Apolipoprotein(a) Kringle IV Types 6–8 to Lipoprotein(a) Assembly. Journal of Biological Chemistry, 2004, 279, 2679-2688.	1.6	33
66	The Apolipoprotein(a) Component of Lipoprotein(a) Stimulates Actin Stress Fiber Formation and Loss of Cell-Cell Contact in Cultured Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 6526-6533.	1.6	55
67	Stimulation of Vascular Smooth Muscle Cell Proliferation and Migration by Apolipoprotein(a) Is Dependent on Inhibition of Transforming Growth Factor-β Activation and on the Presence of Kringle IV Type 9. Journal of Biological Chemistry, 2004, 279, 55187-55195.	1.6	27
68	Lipoprotein(a) as a risk factor for atherosclerosis and thrombosis: mechanistic insights from animal models. Clinical Biochemistry, 2004, 37, 333-343.	0.8	134
69	Identification of Sequences in Apolipoprotein(a) that Maintain Its Closed Conformation:Â A Novel Role for Apo(a) Isoform Size in Determining the Efficiency of Covalent Lp(a) Formationâ€. Biochemistry, 2004, 43, 9978-9988.	1.2	15
70	Structure-function relationships in apolipoprotein(a): insights into lipoprotein(a) assembly and pathogenicity. Current Opinion in Lipidology, 2004, 15, 167-174.	1.2	110
71	Lipoprotein(a) and the link between atherosclerosis and thrombosis. Canadian Journal of Cardiology, 2004, 20 Suppl B, 37B-43B.	0.8	3
72	Inhibition of Plasminogen Activation by Lipoprotein(a). Journal of Biological Chemistry, 2003, 278, 23260-23269.	1.6	99

#	Article	IF	CITATIONS
73	Comparative Analyses of the Lysine Binding Site Properties of Apolipoprotein(a) Kringle IV Types 7 and 10. Biochemistry, 2002, 41, 1149-1155.	1.2	21
74	High-resolution crystal structure of apolipoprotein(a) kringle IV type 7: Insights into ligand binding. Protein Science, 2001, 10, 1124-1129.	3.1	32
75	Identification of a Critical Lysine Residue in Apolipoprotein B-100 That Mediates Noncovalent Interaction with Apolipoprotein(a). Journal of Biological Chemistry, 2001, 276, 36155-36162.	1.6	37
76	CC Chemokine I-309 Is the Principal Monocyte Chemoattractant Induced by Apolipoprotein(a) in Human Vascular Endothelial Cells. Circulation, 2000, 102, 786-792.	1.6	84
77	Lipoprotein(a) Concentration and Apolipoprotein(a) Size. Circulation, 1999, 100, 1151-1153.	1.6	68
78	Characterization of the Gene Encoding Human TAFI (Thrombin-Activable Fibrinolysis Inhibitor; Plasma) Tj ETQq0 C) 0 rgBT /C 1.2	verlock 10 ⁻ 84
79	Sequences within Apolipoprotein(a) Kringle IV Types 6â^'8 Bind Directly to Low-Density Lipoprotein and Mediate Noncovalent Association of Apolipoprotein(a) with Apolipoprotein B-100â€. Biochemistry, 1998, 37, 7892-7898.	1.2	54
80	Apolipoprotein(a) Enhances Platelet Responses to the Thrombin Receptor–Activating Peptide SFLLRN. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1393-1399.	1.1	68
81	Expression of adhesion molecules by Lp(a): a potential novel mechanism for its atherogenicity. FASEB Journal, 1998, 12, 1765-1776.	0.2	100
82	The Solution Phase Interaction between Apolipoprotein(a) and Plasminogen Inhibits the Binding of Plasminogen to a Plasmin-Modified Fibrinogen Surface. Biochemistry, 1997, 36, 10353-10363.	1.2	50
83	Analysis of the mechanism of lipoprotein(a) assembly. Clinical Genetics, 1997, 52, 338-346.	1.0	17
84	Apolipoprotein(a) Attenuates Endogenous Fibrinolysis in the Rabbit Jugular Vein Thrombosis Model In Vivo. Circulation, 1997, 96, 1612-1615.	1.6	42
85	Lipoprotein(a) Assembly. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 1559-1567.	1.1	76
86	Analysis of the Proteolytic Activity of a Recombinant Form of Apolipoprotein(a). Biochemistry, 1995, 34, 15777-15784.	1.2	59
87	Antifibrinolytic Effect of Recombinant Apolipoprotein(a) in Vitro Is Primarily Due to Attenuation of tPA-Mediated Clu-Plasminogen Activation. Biochemistry, 1995, 34, 5151-5157.	1.2	57
88	Carboxyl-terminal truncation of apolipoproteinB-100 inhibits lipoprotein(a) particle formation. FEBS Letters, 1994, 350, 77-81.	1.3	27

89	Apolipoprotein(a): expression and characterization of a recombinant form of the protein in mammalian cells. Biochemistry, 1991, 30, 5044-5051.	1.2	137
----	--	-----	-----