Carlos M Palmeira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3659665/publications.pdf

Version: 2024-02-01

166 10,367 42 97
papers citations h-index g-index

174 174 15833
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	PEG35 as a Preconditioning Agent against Hypoxia/Reoxygenation Injury. International Journal of Molecular Sciences, 2022, 23, 1156.	4.1	7
2	IGL-2 as a Unique Solution for Cold Static Preservation and Machine Perfusion in Liver and Mitochondrial Protection. Transplantation Proceedings, 2022, 54, 73-76.	0.6	5
3	Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nature Reviews Endocrinology, 2022, 18, 243-258.	9.6	225
4	Mitochondrial dysfunction in reproductive and developmental toxicity., 2022, , 1103-1116.		0
5	Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells, 2022, 11, 688.	4.1	17
6	The Use of a Single, Novel Preservation Solution in Split Liver Transplantation and Hypothermic Oxygenated Machine Perfusion. Transplantation, 2022, 106, e187-e188.	1.0	3
7	Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. International Journal of Molecular Sciences, 2022, 23, 5742.	4.1	5
8	Determination of Oxidative Phosphorylation Complexes Activities. Methods in Molecular Biology, 2021, 2310, 17-31.	0.9	0
9	The potential role of sestrin 2 in liver regeneration. Free Radical Biology and Medicine, 2021, 163, 255-267.	2.9	6
10	Sestrin2 and mitochondrial quality control: Potential impact in myogenic differentiation. Ageing Research Reviews, 2021, 67, 101309.	10.9	6
11	Role of PEG35, Mitochondrial ALDH2, and Glutathione in Cold Fatty Liver Graft Preservation: An IGL-2 Approach. International Journal of Molecular Sciences, 2021, 22, 5332.	4.1	15
12	Mitohormesis., 2021,, 729-746.		0
13	miR-378a-3p Participates in Metformin's Mechanism of Action on C2C12 Cells under Hyperglycemia. International Journal of Molecular Sciences, 2021, 22, 541.	4.1	8
14	Chenodeoxycholic Acid Has Non-Thermogenic, Mitodynamic Anti-Obesity Effects in an In Vitro CRISPR/Cas9 Model of Bile Acid Receptor TGR5 Knockdown. International Journal of Molecular Sciences, 2021, 22, 11738.	4.1	6
15	Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics. Nutrients, 2021, 13, 4192.	4.1	10
16	Stimulation of cell invasion by the Golgi Ion Channel GAAP/TMBIM4 via an H2O2-Dependent Mechanism. Redox Biology, 2020, 28, 101361.	9.0	14
17	The yin and yang faces of the mitochondrial deacetylase sirtuin 3 in age-related disorders. Ageing Research Reviews, 2020, 57, 100983.	10.9	23
18	miR-378a: a new emerging microRNA in metabolism. Cellular and Molecular Life Sciences, 2020, 77, 1947-1958.	5.4	38

#	Article	IF	Citations
19	Altered mitochondrial metabolism in the insulinâ€resistant heart. Acta Physiologica, 2020, 228, e13430.	3.8	56
20	Blueberry Consumption Challenges Hepatic Mitochondrial Bioenergetics and Elicits Transcriptomics Reprogramming in Healthy Wistar Rats. Pharmaceutics, 2020, 12, 1094.	4.5	4
21	The Soluble Adenylyl Cyclase Inhibitor LRE1 Prevents Hepatic Ischemia/Reperfusion Damage Through Improvement of Mitochondrial Function. International Journal of Molecular Sciences, 2020, 21, 4896.	4.1	2
22	Polyethylene Glycol 35 as a Perfusate Additive for Mitochondrial and Glycocalyx Protection in HOPE Liver Preservation. International Journal of Molecular Sciences, 2020, 21, 5703.	4.1	24
23	Exploration of the cellular effects of the high-dose, long-term exposure to coffee roasting product furan and its by-product <i>cis</i> -2-butene-1,4-dial on human and rat hepatocytes. Toxicology Mechanisms and Methods, 2020, 30, 536-545.	2.7	3
24	The Evaluation of Mitochondrial Membrane Potential Using Fluorescent Dyes or a Membrane-Permeable Cation (TPP+) Electrode in Isolated Mitochondria and Intact Cells. Methods in Molecular Biology, 2020, 2184, 197-213.	0.9	6
25	Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. Free Radical Biology and Medicine, 2019, 141, 483-491.	2.9	115
26	Enhanced ATP release and CD73â€mediated adenosine formation sustain adenosine A _{2A} receptor overâ€activation in a rat model of Parkinson's disease. British Journal of Pharmacology, 2019, 176, 3666-3680.	5.4	42
27	Biomarkers of Mitochondrial Dysfunction and Toxicity. , 2019, , 981-996.		0
28	Mild hypothermia during the reperfusion phase protects mitochondrial bioenergetics against ischemia-reperfusion injury in an animal model of ex-vivo liver transplantationâ€"an experimental study. International Journal of Medical Sciences, 2019, 16, 1304-1312.	2.5	7
29	Evaluation of bioenergetic and mitochondrial function in liver transplantation. Clinical and Molecular Hepatology, 2019, 25, 190-198.	8.9	6
30	Indirubin and NAD ⁺ prevent mitochondrial ischaemia/reperfusion damage in fatty livers. European Journal of Clinical Investigation, 2018, 48, e12932.	3.4	21
31	Mitochondria in Liver Regeneration: Energy Metabolism and Posthepatectomy Liver Dysfunction. , 2018, , 127-152.		4
32	Correspondence. British Journal of Surgery, 2018, 106, 152-152.	0.3	0
33	Mitochondrial Membrane Potential (\hat{l} " \hat{r} ") Fluctuations Associated with the Metabolic States of Mitochondria. Methods in Molecular Biology, 2018, 1782, 109-119.	0.9	39
34	Mitochondrial damage and apoptosis: Key features in BDE-153-induced hepatotoxicity. Chemico-Biological Interactions, 2018, 291, 192-201.	4.0	13
35	Cytoprotective Mechanisms in Fatty Liver Preservation against Cold Ischemia Injury: A Comparison between IGL-1 and HTK. International Journal of Molecular Sciences, 2018, 19, 348.	4.1	14
36	Recent insights into mitochondrial targeting strategies in liver transplantation. International Journal of Medical Sciences, 2018, 15, 248-256.	2.5	26

#	Article	IF	Citations
37	Addition of Berberine to Preservation Solution in an Animal Model of Ex Vivo Liver Transplant Preserves Mitochondrial Function and Bioenergetics from the Damage Induced by Ischemia/Reperfusion. International Journal of Molecular Sciences, 2018, 19, 284.	4.1	12
38	Aldehyde Dehydrogenase 2 (ALDH2) in Rat Fatty Liver Cold Ischemia Injury. International Journal of Molecular Sciences, 2018, 19, 2479.	4.1	21
39	Research update for articles published in <scp>EJCI</scp> in 2016. European Journal of Clinical Investigation, 2018, 48, e13016.	3.4	0
40	Therapeutic Options Targeting Oxidative Stress, Mitochondrial Dysfunction and Inflammation to Hinder the Progression of Vascular Complications of Diabetes. Frontiers in Physiology, 2018, 9, 1857.	2.8	75
41	Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World Journal of Gastroenterology, 2018, 24, 2984-2994.	3.3	40
42	An autophagic process is activated in HepG2 cells to mediate BDE-100-induced toxicity. Toxicology, 2017, 376, 59-65.	4.2	21
43	Exposure to BDE-153 induces autophagy in HepG2 cells. Toxicology in Vitro, 2017, 42, 61-68.	2.4	9
44	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
45	Bioenergetic adaptations of the human liver in the ALPPS procedure – how liver regeneration correlates with mitochondrial energy status. Hpb, 2017, 19, 1091-1103.	0.3	9
46	Mitochondria in Excitatory and Inhibitory Synapses have Similar Susceptibility to Amyloid-β Peptides Modeling Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 525-536.	2.6	14
47	Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 1129-1144.	2.3	38
48	Adenosine receptors: regulatory players in the preservation of mitochondrial function induced by ischemic preconditioning of rat liver. Purinergic Signalling, 2017, 13, 179-190.	2.2	10
49	Unacylated ghrelin prevents mitochondrial dysfunction in a model of ischemia/reperfusion liver injury. Cell Death Discovery, 2017, 3, 17077.	4.7	23
50	Lack of Additive Effects of Resveratrol and Energy Restriction in the Treatment of Hepatic Steatosis in Rats. Nutrients, 2017, 9, 737.	4.1	14
51	GSK3 \hat{l}^2 and VDAC Involvement in ER Stress and Apoptosis Modulation during Orthotopic Liver Transplantation. International Journal of Molecular Sciences, 2017, 18, 591.	4.1	17
52	Mitochondrial Dysfunction in Reproductive and Developmental Toxicity., 2017,, 1023-1035.		6
53	Mitochondrial bioenergetics and posthepatectomy liver dysfunction. European Journal of Clinical Investigation, 2016, 46, 627-635.	3.4	18
54	Evaluation of Polybrominated Diphenyl Ether Toxicity on HepG2 Cells – Hexabrominated Congener (<scp>BDE</scp> â€154) Is Less Toxic than Tetrabrominated Congener (<scp>BDE</scp> â€47). Basic and Clinical Pharmacology and Toxicology, 2016, 119, 485-497.	2.5	27

#	Article	IF	CITATIONS
55	Low-dose, subchronic exposure to silver nanoparticles causes mitochondrial alterations in Sprague–Dawley rats. Nanomedicine, 2016, 11, 1359-1375.	3.3	37
56	The bile acid chenodeoxycholic acid directly modulates metabolic pathways in white adipose tissue <i>in vitro</i> : insight into how bile acids decrease obesity. NMR in Biomedicine, 2016, 29, 1391-1402.	2.8	18
57	Hepatic and skeletal muscle mitochondrial toxicity of chitosan oligosaccharides of normal and diabetic rats. Toxicology Mechanisms and Methods, 2016, 26, 650-657.	2.7	10
58	Mitochondria as a Target for Safety and Toxicity Evaluation of Nutraceuticals., 2016,, 387-400.		2
59	Editorial (Thematic issue): Metabolic Diseases: Drugs and Mitochondrial Targets. Current Medicinal Chemistry, 2015, 22, 2406-2406.	2.4	0
60	$PPAR < i > \hat{l} \pm < / i > Agonist WY-14643 \ Induces \ SIRT1 \ Activity \ in \ Rat \ Fatty \ Liver \ Is chemia-Reperfusion \ Injury.$ BioMed Research International, 2015, 2015, 1-7.	1.9	15
61	The Emerging Role of MitomiRs in the Pathophysiology of Human Disease. Advances in Experimental Medicine and Biology, 2015, 888, 123-154.	1.6	65
62	Biochemical and physiological responses of Carcinus maenas to temperature and the fungicide azoxystrobin. Chemosphere, 2015, 132, 127-134.	8.2	10
63	Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?. Redox Biology, 2015, 6, 372-385.	9.0	279
64	Impairment of mitochondrial energy metabolism of two marine fish by in vitro mercuric chloride exposure. Marine Pollution Bulletin, 2015, 97, 488-493.	5 . 0	13
65	Determination of Oxidative Phosphorylation Complexes Activities. Methods in Molecular Biology, 2015, 1241, 71-84.	0.9	5
66	Regulation of Mitochondrial Function and its Impact in Metabolic Stress. Current Medicinal Chemistry, 2015, 22, 2468-2479.	2.4	25
67	Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation. World Journal of Gastroenterology, 2015, 21, 8021.	3.3	11
68	Sirtuin 1 in rat orthotopic liver transplantation: An IGL-1 preservation solution approach. World Journal of Gastroenterology, 2015, 21, 1765.	3.3	22
69	The Role of microRNAs in Mitochondria: Small Players Acting Wide. Genes, 2014, 5, 865-886.	2.4	116
70	Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. International Journal of Obesity, 2014, 38, 1027-1034.	3.4	55
71	Mitochondrial Cumulative Damage Induced by Mitoxantrone: Late Onset Cardiac Energetic Impairment. Cardiovascular Toxicology, 2014, 14, 30-40.	2.7	37
72	Cumulative Mitoxantroneâ€Induced Haematological and Hepatic Adverse Effects in a Subchronic <i>In vivo</i> Study. Basic and Clinical Pharmacology and Toxicology, 2014, 114, 254-262.	2.5	13

#	Article	IF	Citations
73	High-fat and obesogenic diets: current and future strategies to fight obesity and diabetes. Genes and Nutrition, 2014, 9, 406.	2.5	26
74	Biomarkers of mitochondrial dysfunction and toxicity., 2014,, 847-861.		1
75	The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis. Neuropharmacology, 2014, 81, 142-152.	4.1	104
76	Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: A possible role for SirT3 activation. Mitochondrion, 2013, 13, 637-646.	3.4	93
77	Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell, 2013, 155, 1624-1638.	28.9	1,134
78	Therapeutic Concentrations of Mitoxantrone Elicit Energetic Imbalance in H9c2 Cells as an Earlier Event. Cardiovascular Toxicology, 2013, 13, 413-425.	2.7	31
79	Dibenzofuran-induced mitochondrial dysfunction: Interaction with ANT carrier. Toxicology in Vitro, 2013, 27, 2160-2168.	2.4	15
80	Uncovering the beginning of diabetes: the cellular redox status and oxidative stress as starting players in hyperglycemic damage. Molecular and Cellular Biochemistry, 2013, 376, 103-110.	3.1	32
81	The NAD ratio redox paradox: why does too much reductive power cause oxidative stress?. Toxicology Mechanisms and Methods, 2013, 23, 297-302.	2.7	62
82	The metabolic profile of mitoxantrone and its relation with mitoxantrone-induced cardiotoxicity. Archives of Toxicology, 2013, 87, 1809-1820.	4.2	49
83	Mitochondrial Membrane Potential (î"î") Fluctuations Associated with the Metabolic States of Mitochondria. Methods in Molecular Biology, 2012, 810, 89-101.	0.9	31
84	Nerolidol effects on mitochondrial and cellular energetics. Toxicology in Vitro, 2012, 26, 189-196.	2.4	35
85	Exposure to dibenzofuran triggers autophagy in lung cells. Toxicology Letters, 2012, 209, 35-42.	0.8	27
86	Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 185-195.	3.8	155
87	SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metabolism, 2012, 15, 675-690.	16.2	1,251
88	Antioxidant capacity and toxicological evaluation of <i>Pterospartum tridentatum </i> flower extracts. CYTA - Journal of Food, 2012, 10, 92-102.	1.9	15
89	Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radical Biology and Medicine, 2012, 52, 59-69.	2.9	743
90	Hepatic FXR: key regulator of whole-body energy metabolism. Trends in Endocrinology and Metabolism, 2011, 22, 458-466.	7.1	103

#	Article	IF	CITATIONS
91	Assessment of the toxicity of silver nanoparticles in vitro: A mitochondrial perspective. Toxicology in Vitro, 2011, 25, 664-670.	2.4	197
92	Therapeutic concentrations of mitoxantrone elicit cytotoxic effects on H9c2 cells. Toxicology Letters, 2011, 205, S56.	0.8	0
93	Exposure to dibenzofuran affects lung mitochondrial functionin vitro. Toxicology Mechanisms and Methods, 2011, 21, 571-576.	2.7	12
94	Mitochondrial dysfunction in reproductive and developmental toxicity., 2011,, 815-824.		1
95	Fatty Liver and Ischemia/Reperfusion: Are there Drugs Able to Mitigate Injury?. Current Medicinal Chemistry, 2011, 18, 4987-5002.	2.4	22
96	Regulation of Mitochondrial Biogenesis in Metabolic Syndrome. Current Drug Targets, 2011, 12, 872-878.	2.1	20
97	Differential Sex, Morphotype and Tissue Accumulation of Mercury in the Crab Carcinus maenas. Water, Air, and Soil Pollution, 2011, 222, 65-75.	2.4	11
98	Ursodeoxycholic acid treatment of hepatic steatosis: a ¹³ C NMR metabolic study. NMR in Biomedicine, 2011, 24, 1145-1158.	2.8	3
99	Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology, 2010, 270, 92-98.	4.2	102
100	Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging, 2010, 2, 914-923.	3.1	462
101	Exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and tetraethyl lead affects lung mitochondria bioenergetics. Toxicology Mechanisms and Methods, 2010, 20, 1-6.	2.7	5
102	Indirubin-3′-oxime prevents hepatic I/R damage by inhibiting GSK-3β and mitochondrial permeability transition. Mitochondrion, 2010, 10, 456-463.	3.4	39
103	Prevention of I/R injury in fatty livers by ischemic preconditioning is associated with increased mitochondrial tolerance: the key role of ATPsynthase and mitochondrial permeability transition. Transplant International, 2009, 22, 1081-1090.	1.6	36
104	Biosensor plates detect mitochondrial physiological regulators and mutations in vivo. Analytical Biochemistry, 2009, 385, 176-178.	2.4	18
105	Estimating gluconeogenesis by NMR isotopomer distribution analysis of [¹³ C]bicarbonate and [1â€ ¹³ C]lactate. NMR in Biomedicine, 2008, 21, 337-344.	2.8	3
106	Mitochondria a key role in microcystin-LR kidney intoxication. Journal of Applied Toxicology, 2008, 28, 55-62.	2.8	40
107	Indirubin-3′-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction. Toxicology and Applied Pharmacology, 2008, 233, 179-185.	2.8	23
108	S10.26 Nerolidol disturbe mitochondrial bioenergetic but delay the permeability transition pore due a membrane antioxidant protective effect. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S64.	1.0	0

#	Article	IF	Citations
109	Differential alterations in mitochondrial function induced by a choline-deficient diet: Understanding fatty liver disease progression. Mitochondrion, 2008, 8, 367-376.	3.4	91
110	Evaluation of olive oil mill wastewater toxicity on the mitochondrial bioenergetics after treatment with Candida oleophila. Ecotoxicology and Environmental Safety, 2008, 70, 266-275.	6.0	26
111	Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis. Toxicology and Applied Pharmacology, 2007, 225, 214-220.	2.8	114
112	Mitochondrial Bioenergetics, Diabetes, and Aging: Top-Down Analysis Using the Diabetic Goto-Kakizaki (GK) Rat as a Model. Toxicology Mechanisms and Methods, 2006, 16, 323-330.	2.7	2
113	Decreased ANT content in Zucker fatty rats: Relevance for altered hepatic mitochondrial bioenergetics in steatosis. FEBS Letters, 2006, 580, 2153-2157.	2.8	25
114	Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology, 2006, 212, 167-178.	2.8	804
115	Bile Acids Are Toxic for Isolated Cardiac Mitochondria: A Possible Cause for Hepatic-Derived Cardiomyopathies?. Cardiovascular Toxicology, 2005, 5, 063-074.	2.7	37
116	Mitochondrial Function Is Not Affected by Renal Morphological Changes in Diabetic Goto-Kakizaki Rat. Toxicology Mechanisms and Methods, 2005, 15, 253-261.	2.7	3
117	Role of Mitochondrial Dysfunction in Combined Bile Acid-Induced Cytotoxicity: The Switch Between Apoptosis and Necrosis. Toxicological Sciences, 2004, 79, 196-204.	3.1	63
118	Carvedilol Inhibits the Mitochondrial Permeability Transition by an Antioxidant Mechanism. Cardiovascular Toxicology, 2004, 4, 11-20.	2.7	23
119	Mitochondrially-mediated toxicity of bile acids. Toxicology, 2004, 203, 1-15.	4.2	180
120	Vitamin E or coenzyme Q10 administration is not fully advantageous for heart mitochondrial function in diabetic goto kakizaki rats. Mitochondrion, 2004, 3, 337-345.	3.4	15
121	Title is missing!. Molecular and Cellular Biochemistry, 2003, 246, 163-170.	3.1	76
122	Cholestasis induced by chronic treatment with \hat{l}_{\pm} -naphthyl-isothiocyanate (ANIT) affects rat renal mitochondrial bioenergetics. Archives of Toxicology, 2003, 77, 194-200.	4.2	6
123	Diabetes and mitochondrial bioenergetics: Alterations with age. Journal of Biochemical and Molecular Toxicology, 2003, 17, 214-222.	3.0	49
124	Histological changes and impairment of liver mitochondrial bioenergetics after long-term treatment with \hat{l}_{\pm} -naphthyl-isothiocyanate (ANIT). Toxicology, 2003, 190, 185-196.	4.2	17
125	Protection against post-ischemic mitochondrial injury in rat liver by silymarin or TUDC. Hepatology Research, 2003, 26, 217-224.	3.4	36
126	Diabetes induces metabolic adaptations in rat liver mitochondria: role of coenzyme Q and cardiolipin contents. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1639, 113-120.	3.8	53

#	Article	IF	Citations
127	Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Letters, 2003, 554, 511-514.	2.8	72
128	Reduction in cardiac mitochondrial calcium loading capacityÂis observableÂduring α-naphthylisothiocyanate-induced acute cholestasis: a clue for hepatic-derived cardiomyopathies?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1637, 39-45.	3.8	9
129	Mitochondrially mediated synergistic cell killing by bile acids. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1637, 127-132.	3.8	51
130	Chenodeoxycholate induction of mitochondrial permeability transition pore is associated with increased membrane fluidity and cytochrome c release: protective role of carvedilol. Mitochondrion, 2003, 2, 305-311.	3.4	27
131	Cardiac Mitochondrial Calcium Loading Capacity Is Severely Affected after Chronic Cholestasis in Wistar Rats. Journal of Investigative Medicine, 2003, 51, 86-94.	1.6	O
132	Disruption of Mitochondrial Calcium Homeostasis after Chronic α-Naphthylisothiocyanate Administration: Relevance for Cholestasis. Journal of Investigative Medicine, 2002, 50, 193-200.	1.6	19
133	Interactions of combined bile acids on hepatocyte viability: cytoprotection or synergism. Toxicology Letters, 2002, 126, 197-203.	0.8	26
134	Improved Efficiency of Hepatic Mitochondrial Function in Rats with Cholestasis Induced by an Acute Dose of α-Naphthylisothiocyanate. Toxicology and Applied Pharmacology, 2002, 182, 20-26.	2.8	11
135	Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 2001, 121, 151-157.	0.8	190
136	Carvedilol in heart mitochondria. Life Sciences, 2001, 69, 123-132.	4.3	13
137	Enhanced mitochondrial testicular antioxidant capacity in Goto-Kakizaki diabetic rats: role of coenzyme Q. American Journal of Physiology - Cell Physiology, 2001, 281, C1023-C1028.	4.6	52
138	Brain and liver mitochondria isolated from diabeticGoto-Kakizaki rats show different susceptibility to induced oxidative stress. Diabetes/Metabolism Research and Reviews, 2001, 17, 223-230.	4.0	68
139	Chenodeoxycholate Is a Potent Inducer of the Permeability Transition Pore in Rat Liver Mitochondria. Bioscience Reports, 2001, 21, 73-80.	2.4	21
140	Decreased Susceptibility of Heart Mitochondria from Diabetic GK Rats to Mitochondrial Permeability Transition Induced by Calcium Phosphate. Bioscience Reports, 2001, 21, 45-53.	2.4	30
141	Carvedilol Reduces Mitochondrial Damage Induced by Hypoxanthine/Xanthine Oxidase: Relevance to Hypoxia/Reoxygenation Injury. Cardiovascular Toxicology, 2001, 1, 205-214.	2.7	21
142	Protective effect of carvedilol on chenodeoxycholate induction of the permeability transition pore 11 Abbreviations: CyA, cyclosporine A; CDCA, chenodeoxycholic acid; PTP, permeability transition pore; TPP+, tetraphenylphosphonium; and ÎÎ; transmembrane electric potential Biochemical Pharmacology, 2001, 61, 1449-1454.	4.4	9
143	Inhibitory effect of carvedilol in the high-conductance state of the mitochondrial permeability transition pore. European Journal of Pharmacology, 2001, 412, 231-237.	3.5	22
144	CHOLESTASIS AND MITOCHONDRIAL DYSFUNCTION: A REVIEW. Toxic Substance Mechanisms, 2000, 19, 83-98.	0.3	4

#	Article	IF	Citations
145	Bile Acids Affect Liver Mitochondrial Bioenergetics: Possible Relevance for Cholestasis Therapy. Toxicological Sciences, 2000, 57, 177-185.	3.1	143
146	Induction of the Mitochondrial Permeability Transition in Vitro by Short-Chain Carboxylic Acids. Biochemical and Biophysical Research Communications, 2000, 272, 431-435.	2.1	9
147	HERBICIDE-INDUCED MITOCHONDRIAL AND CELLULAR LIVER TOXICITY: A REVIEW OF PARAQUAT, DINOSEB, AND 2, 4-D EFFECTS. Toxic Substance Mechanisms, 1999, 18, 187-204.	0.3	12
148	Age-related alterations in liver mitochondrial bioenergetics of diabetic Goto-Kakizaki rats. Acta Diabetologica, 1999, 36, 173-177.	2.5	13
149	Decreased susceptibility to lipid peroxidation of Goto-Kakizaki rats: Relationship to mitochondrial antioxidant capacity. Life Sciences, 1999, 65, 1013-1025.	4.3	35
150	Alterations of liver mitochondrial bioenergetics in diabetic Goto-Kakizaki rats. Metabolism: Clinical and Experimental, 1999, 48, 1115-1119.	3.4	19
151	Higher efficiency of the liver phosphorylative system in diabetic Goto-Kakizaki (GK) rats. FEBS Letters, 1999, 458, 103-106.	2.8	22
152	Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1411, 201-205.	1.0	134
153	Acrylic Acid Induces the Glutathione-Independent Mitochondrial Permeability Transitionin Vitro. Toxicological Sciences, 1998, 43, 19-27.	3.1	13
154	Mercuric chloride toxicity in rat liver mitochondria and isolated hepatocytes. Environmental Toxicology and Pharmacology, 1997, 3, 229-235.	4.0	30
155	Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1321, 101-106.	1.0	88
156	Benzoquinone Inhibits the Voltage-Dependent Induction of the Mitochondrial Permeability Transition Caused by Redox-Cycling Naphthoquinones. Toxicology and Applied Pharmacology, 1997, 143, 338-347.	2.8	76
157	Continuous monitoring of mitochondrial membrane potential in hepatocyte cell suspensions. Journal of Pharmacological and Toxicological Methods, 1996, 35, 35-43.	0.7	54
158	Determination of 8-Hydroxydeoxyguanosine in Biological Tissue by Liquid Chromatography/Electrospray Ionization-Mass Spectrometry/Mass Spectrometry. , 1996, 10, 1789-1791.		63
159	Effects of paraquat, dinoseb and 2,4-D on intracellular calcium and on vasopressin-induced calcium mobilization in isolated hepatocytes. Archives of Toxicology, 1995, 69, 460-466.	4.2	13
160	Mitochondrial bioenergetics is affected by the herbicide paraquat. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1229, 187-192.	1.0	66
161	Thiols metabolism is altered by the herbicides paraquat, dinoseb and 2,4-D: A study in isolated hepatocytes. Toxicology Letters, 1995, 81, 115-123.	0.8	74
162	Interactions of Herbicides 2,4-D and Dinoseb with Liver Mitochondrial Bioenergetics. Toxicology and Applied Pharmacology, 1994, 127, 50-57.	2.8	120

#	Article	IF	CITATIONS
163	Metabolic alterations in hepatocytes promoted by the herbicides paraquat, dinoseb and 2,4-D. Archives of Toxicology, 1994, 68, 24.	4.2	16
164	Membrane lipid peroxidation induces changes in \hat{I}^3 -[3H]aminobutyric acid transport and calcium uptake by synaptosomes. Brain Research, 1993, 609, 117-123.	2.2	38
165	Partitioning and membrane disordering effects of dopamine antagonists: Influence of lipid peroxidation, temperature, and drug concentration. Archives of Biochemistry and Biophysics, 1992, 295, 161-171.	3.0	20
166	DNA Break-Induced Epigenetic Drift as a Cause of Mammalian Aging. SSRN Electronic Journal, 0, , .	0.4	19