
Sviatoslav Ditalia Tchernij

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3659544/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Photon-Emitting Optical Centers in Diamond Fabricated upon Sn Implantation. ACS Photonics, 2017, 4, 2580-2586.	6.6	86
2	Single-Photon Emitters in Lead-Implanted Single-Crystal Diamond. ACS Photonics, 2018, 5, 4864-4871.	6.6	66
3	Electrical control of deep NV centers in diamond by means of sub-superficial graphitic micro-electrodes. Carbon, 2017, 113, 76-86.	10.3	31
4	Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits. Scientific Reports, 2018, 8, 2221.	3.3	22
5	Practical Applications of Quantum Sensing: A Simple Method to Enhance the Sensitivity of Nitrogen-Vacancy-Based Temperature Sensors. Physical Review Applied, 2020, 13, .	3.8	17
6	Mapping the Local Spatial Charge in Defective Diamond by Means of N- <i>V</i> Sensors—A Self-Diagnostic Concept. Physical Review Applied, 2018, 10, .	3.8	15
7	Photo-physical properties of He-related color centers in diamond. Applied Physics Letters, 2017, 111, .	3.3	13
8	Direct experimental observation of nonclassicality in ensembles of single-photon emitters. Physical Review B, 2017, 96, .	3.2	13
9	Creation and characterization of He-related color centers in diamond. Journal of Luminescence, 2016, 179, 59-63.	3.1	12
10	Fabrication of monolithic microfluidic channels in diamond with ion beam lithography. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 193-197.	1.4	12
11	Electrical characterization of a graphite-diamond-graphite junction fabricated by MeV carbon implantation. Diamond and Related Materials, 2017, 74, 125-131.	3.9	11
12	Synthesis and characterization of porphyrin functionalized nanodiamonds. Diamond and Related Materials, 2019, 91, 22-28.	3.9	9
13	Feasibility study towards comparison of the <i>g</i> ⁽²⁾ (0) measurement in the visible range. Metrologia, 2019, 56, 015016.	1.2	6
14	Fluorine-based color centers in diamond. Scientific Reports, 2020, 10, 21537.	3.3	6
15	Spectral features of Pb-related color centers in diamond – a systematic photoluminescence characterization. New Journal of Physics, 2021, 23, 063032.	2.9	6
16	Structural characterization of 8â€MeV 11B implanted diamond. Diamond and Related Materials, 2020, 104, 107770.	3.9	5
17	Spectral Emission Dependence of Tinâ€Vacancy Centers in Diamond from Thermal Processing and Chemical Functionalization. Advanced Photonics Research, 2022, 3, 2100148.	3.6	5
18	A biocompatible technique for magnetic field sensing at (sub)cellular scale using Nitrogen-Vacancy centers. EPJ Quantum Technology, 2020, 7, .	6.3	3

#	Article	IF	CITATIONS
19	Quantum-optical characterization of single-photon emitters created by MeV proton irradiation of HPHT diamond nanocrystals. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 318-322.	1.4	2
20	Channeling STIM analysis of radiation damage in single crystal diamond membrane. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 96-99.	1.4	1
21	Color centres in diamond from single photon sources to ODMR in cells. , 2018, , .		1
22	Super-resolution from single photon emission: toward biological application. , 2017, , .		0