Chun-Li Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3659517/publications.pdf

Version: 2024-02-01

201674 223800 4,618 45 27 46 citations h-index g-index papers 51 51 51 5624 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature, 2000, 408, 106-111.	27.8	953
2	A role for adult TLX-positive neural stem cells in learning and behaviour. Nature, 2008, 451, 1004-1007.	27.8	469
3	In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nature Cell Biology, 2013, 15, 1164-1175.	10.3	437
4	In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nature Communications, 2014, 5, 3338.	12.8	353
5	Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nature Communications, 2013, 4, 2183.	12.8	299
6	SOX2 Reprograms Resident Astrocytes into Neural Progenitors in the Adult Brain. Stem Cell Reports, 2015, 4, 780-794.	4.8	192
7	Revisiting astrocyte to neuron conversion with lineage tracing inÂvivo. Cell, 2021, 184, 5465-5481.e16.	28.9	175
8	Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients. Cell Reports, 2016, 14, 115-128.	6.4	136
9	Direct Reprogramming Rather than iPSC-Based Reprogramming Maintains Aging Hallmarks in Human Motor Neurons. Frontiers in Molecular Neuroscience, 2017, 10, 359.	2.9	128
10	Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1. Genes and Development, 2006, 20, 1308-1320.	5.9	119
11	TrkB dependent adult hippocampal progenitor differentiation mediates sustained ketamine antidepressant response. Nature Communications, 2017, 8, 1668.	12.8	103
12	Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming. Stem Cell Reports, 2016, 7, 955-969.	4.8	100
13	The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord. Cell Reports, 2016, 17, 891-903.	6.4	96
14	InÂvivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell, 2021, 28, 923-937.e4.	11.1	90
15	Activation of Postnatal Neural Stem Cells Requires Nuclear Receptor TLX. Journal of Neuroscience, 2011, 31, 13816-13828.	3.6	83
16	Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nature Immunology, 2020, 21, 546-554.	14.5	78
17	Astrocyte-Specific Deletion of Sox2 Promotes Functional Recovery After Traumatic Brain Injury. Cerebral Cortex, 2019, 29, 54-69.	2.9	61
18	TLX: A master regulator for neural stem cell maintenance and neurogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 210-216.	1.9	60

#	Article	IF	CITATIONS
19	Transcription-Factor-Dependent Control of Adult Hippocampal Neurogenesis. Cold Spring Harbor Perspectives in Biology, 2015, 7, a018879.	5 . 5	55
20	SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells. Journal of Biological Chemistry, 2012, 287, 5969-5978.	3.4	52
21	Enhancer Analysis Unveils Genetic Interactions between TLX and SOX2 in Neural Stem Cells and InÂVivo Reprogramming. Stem Cell Reports, 2015, 5, 805-815.	4.8	51
22	Minocycline modulates microglia polarization in ischemia-reperfusion model of retinal degeneration and induces neuroprotection. Scientific Reports, 2017, 7, 14065.	3.3	46
23	Engineering new neurons: in vivo reprogramming in mammalian brain and spinal cord. Cell and Tissue Research, 2018, 371, 201-212.	2.9	42
24	Phenotypic Reprogramming of Striatal Neurons into Dopaminergic Neuron-like Cells in the Adult Mouse Brain. Stem Cell Reports, 2018, 11, 1156-1170.	4.8	41
25	The Nuclear Receptor TLX Is Required for Gliomagenesis within the Adult Neurogenic Niche. Molecular and Cellular Biology, 2012, 32, 4811-4820.	2.3	38
26	<i>In Vivo</i> Reprogramming for Brain and Spinal Cord Repair. ENeuro, 2015, 2, ENEURO.0106-15.2015.	1.9	38
27	Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia. Journal of Neuroscience, 2021, 41, 2024-2038.	3 . 6	32
28	Regeneration Through in vivo Cell Fate Reprogramming for Neural Repair. Frontiers in Cellular Neuroscience, 2020, 14, 107.	3.7	30
29	A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2107339119.	7.1	27
30	The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders. Progress in Neurobiology, 2017, 157, 212-229.	5.7	25
31	Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling. Frontiers in Neuroscience, 2014, 8, 74.	2.8	23
32	SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5782-5790.	7.1	21
33	Structural basis for corepressor assembly by the orphan nuclear receptor TLX. Genes and Development, 2015, 29, 440-450.	5.9	18
34	Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 61.	10.8	18
35	Regeneration through Reprogramming Adult Cell Identity inÂVivo. American Journal of Pathology, 2015, 185, 2619-2628.	3.8	16
36	Reprogramming Glia Into Neurons in the Peripheral Auditory System as a Solution for Sensorineural Hearing Loss: Lessons From the Central Nervous System. Frontiers in Molecular Neuroscience, 2018, 11, 77.	2.9	16

#	Article	IF	CITATIONS
37	In vivo gliaâ€toâ€neuron conversion: pitfalls and solutions. Developmental Neurobiology, 2022, 82, 367-374.	3.0	14
38	Differential Influence of Sample Sex and Neuronal Maturation on mRNA and Protein Transport in Induced Human Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 46.	2.9	13
39	Prospects of Directly Reprogrammed Adult Human Neurons for Neurodegenerative Disease Modeling and Drug Discovery: iN vs. iPSCs Models. Frontiers in Neuroscience, 2020, 14, 546484.	2.8	11
40	Therapeutic Nanomaterials for Neurological Diseases and Cancer Therapy. Journal of Nanomaterials, 2020, 2020, 1-18.	2.7	8
41	<scp>NEK6</scp> is an <scp>injuryâ€responsive</scp> kinase cooperating with <scp>STAT3</scp> in regulation of reactive astrogliosis. Glia, 2022, 70, 273-286.	4.9	8
42	Physiological, pathological, and engineered cell identity reprogramming in the central nervous system. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 499-517.	5.9	7
43	Targeting N-Terminal Huntingtin with a Dual-sgRNA Strategy by CRISPR/Cas9. BioMed Research International, 2019, 2019, 1-10.	1.9	6
44	Reply to InÂvivo confusion over inÂvivo conversion. Molecular Therapy, 2022, 30, 986-987.	8.2	6
45	Transplanting Rac1-silenced bone marrow mesenchymal stem cells promote neurological function recovery in TBI mice. Aging, 2021, 13, 2822-2850.	3.1	4