Carlo Adamo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3658931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward reliable density functional methods without adjustable parameters: The PBEO model. Journal of Chemical Physics, 1999, 110, 6158-6170.	1.2	14,178
2	Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. Journal of Chemical Physics, 1998, 108, 664-675.	1.2	3,068
3	The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chemical Society Reviews, 2013, 42, 845-856.	18.7	1,424
4	Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. Journal of Chemical Theory and Computation, 2009, 5, 2420-2435.	2.3	942
5	A Qualitative Index of Spatial Extent in Charge-Transfer Excitations. Journal of Chemical Theory and Computation, 2011, 7, 2498-2506.	2.3	858
6	TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes:  Conventional versus Long-Range Hybrids. Journal of Chemical Theory and Computation, 2008, 4, 123-135.	2.3	766
7	Toward reliable adiabatic connection models free from adjustable parameters. Chemical Physics Letters, 1997, 274, 242-250.	1.2	706
8	Accurate excitation energies from time-dependent density functional theory: Assessing the PBEO model. Journal of Chemical Physics, 1999, 111, 2889-2899.	1.2	661
9	Accurate Simulation of Optical Properties in Dyes. Accounts of Chemical Research, 2009, 42, 326-334.	7.6	435
10	TD-DFT Assessment of Functionals for Optical 0–0 Transitions in Solvated Dyes. Journal of Chemical Theory and Computation, 2012, 8, 2359-2372.	2.3	403
11	On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies. Journal of Chemical Theory and Computation, 2010, 6, 2071-2085.	2.3	383
12	Mechanism of the Palladium-Catalyzed Homocoupling of Arylboronic Acids:  Key Involvement of a Palladium Peroxo Complex. Journal of the American Chemical Society, 2006, 128, 6829-6836.	6.6	345
13	On the Metric of Charge Transfer Molecular Excitations: A Simple Chemical Descriptor. Journal of Chemical Theory and Computation, 2013, 9, 3118-3126.	2.3	335
14	Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals. Journal of Chemical Physics, 2007, 126, 154703.	1.2	307
15	Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Physical Chemistry Chemical Physics, 2011, 13, 16987.	1.3	301
16	Dye chemistry with time-dependent density functional theory. Physical Chemistry Chemical Physics, 2014, 16, 14334-14356.	1.3	294
17	Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. Journal of Chemical Physics, 2007, 126, 144105.	1.2	290
18	What is the "best―atomic charge model to describe through-space charge-transfer excitations?. Physical Chemistry Chemical Physics, 2012, 14, 5383.	1.3	290

#	Article	IF	CITATIONS
19	Toward chemical accuracy in the computation of NMR shieldings: the PBEO model. Chemical Physics Letters, 1998, 298, 113-119.	1.2	266
20	Choosing a Functional for Computing Absorption and Fluorescence Band Shapes with TD-DFT. Journal of Chemical Theory and Computation, 2013, 9, 2749-2760.	2.3	243
21	Seeking for parameter-free double-hybrid functionals: The PBEO-DH model. Journal of Chemical Physics, 2011, 135, 024106.	1.2	226
22	Through-Space Charge Transfer in Rod-Like Molecules: Lessons from Theory. Journal of Physical Chemistry C, 2012, 116, 11946-11955.	1.5	222
23	Proton transfer in the ground and lowest excited states of malonaldehyde: A comparative density functional and postâ€Hartree–Fock study. Journal of Chemical Physics, 1996, 105, 11007-11019.	1.2	215
24	Photoinduced Intramolecular Electron Transfer in Ruthenium and Osmium Polyads:Â Insights from Theory. Journal of the American Chemical Society, 2004, 126, 10763-10777.	6.6	210
25	A TDDFT study of the electronic spectrum of s-tetrazine in the gas-phase and in aqueous solution. Chemical Physics Letters, 2000, 330, 152-160.	1.2	205
26	Structural and Electronic Properties of Selected Rutile and Anatase TiO ₂ Surfaces:  An ab Initio Investigation. Journal of Chemical Theory and Computation, 2008, 4, 341-352.	2.3	204
27	Assessment of Functionals for TD-DFT Calculations of Singletâ ^{~,} Triplet Transitions. Journal of Chemical Theory and Computation, 2010, 6, 1532-1537.	2.3	194
28	First-Principles Modeling of Dye-Sensitized Solar Cells: Challenges and Perspectives. Accounts of Chemical Research, 2012, 45, 1268-1277.	7.6	194
29	Predicting proton transfer barriers with density functional methods. Chemical Physics Letters, 1999, 306, 83-87.	1.2	178
30	A Theoretical Investigation of the Ground and Excited States of Selected Ru and Os Polypyridyl Molecular Dyes. Journal of Physical Chemistry A, 2002, 106, 11354-11360.	1.1	174
31	On the Calculation and Modeling of Magnetic Exchange Interactions in Weakly Bonded Systems:Â The Case of the Ferromagnetic Copper(II) μ2-Azido Bridged Complexes. Inorganic Chemistry, 1999, 38, 1996-2004.	1.9	173
32	Conformational behavior of gaseous glycine by a density functional approach. Journal of Chemical Physics, 1995, 102, 364-370.	1.2	171
33	An accurate density functional method for the study of magnetic properties: the PBEO model. Computational and Theoretical Chemistry, 1999, 493, 145-157.	1.5	168
34	Benchmarking Density Functionals on Structural Parameters of Small-/Medium-Sized Organic Molecules. Journal of Chemical Theory and Computation, 2016, 12, 459-465.	2.3	165
35	A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 11276.	1.3	161
36	First hyperpolarizability of polymethineimine with long-range corrected functionals. Journal of Chemical Physics, 2007, 126, 191108.	1.2	158

#	Article	IF	CITATIONS
37	Communication: Double-hybrid functionals from adiabatic-connection: The QIDH model. Journal of Chemical Physics, 2014, 141, 031101.	1.2	154
38	Inexpensive and accurate predictions of optical excitations in transition-metal complexes: the TDDFT/PBEO route. Theoretical Chemistry Accounts, 2000, 105, 169-172.	0.5	141
39	Validation of selfâ€consistent hybrid density functionals for the study of structural and electronic characteristics of organic Ï€ radicals. Journal of Chemical Physics, 1995, 102, 384-393.	1.2	138
40	Physically motivated density functionals with improved performances: The modified Perdew–Burke–Ernzerhof model. Journal of Chemical Physics, 2002, 116, 5933-5940.	1.2	138
41	Performance of an Optimally Tuned Range-Separated Hybrid Functional for 0–0 Electronic Excitation Energies. Journal of Chemical Theory and Computation, 2014, 10, 1677-1685.	2.3	135
42	Assessment of the ωB97 family for excited-state calculations. Theoretical Chemistry Accounts, 2011, 128, 127-136.	0.5	132
43	Bond Length Alternation of Conjugated Oligomers: Wave Function and DFT Benchmarks. Journal of Chemical Theory and Computation, 2011, 7, 369-376.	2.3	131
44	Planar vs. twisted intramolecular charge transfer mechanism in Nile Red: new hints from theory. Physical Chemistry Chemical Physics, 2010, 12, 8016.	1.3	126
45	First Principles Modeling of Eosin-Loaded ZnO Films: A Step toward the Understanding of Dye-Sensitized Solar Cell Performances. Journal of the American Chemical Society, 2009, 131, 14290-14298.	6.6	124
46	Verdict: Time-Dependent Density Functional Theory "Not Guilty―of Large Errors for Cyanines. Journal of Chemical Theory and Computation, 2012, 8, 1255-1259.	2.3	122
47	Assessment of long-range corrected functionals performance for n→π* transitions in organic dyes. Journal of Chemical Physics, 2007, 127, 094102.	1.2	119
48	Accurate Evaluation of Valence and Low-Lying Rydberg States with Standard Time-Dependent Density Functional Theory. Journal of Physical Chemistry A, 2007, 111, 5549-5556.	1.1	119
49	Contribution to the Mechanism of Copper-Catalyzed C–N and C–O Bond Formation. Organometallics, 2012, 31, 7694-7707.	1.1	119
50	Exploring excited states using Time Dependent Density Functional Theory and density-based indexes. Coordination Chemistry Reviews, 2015, 304-305, 166-178.	9.5	118
51	Accurate excitation energies from time-dependent density functional theory: assessing the PBEO model for organic free radicals. Chemical Physics Letters, 1999, 314, 152-157.	1.2	116
52	A General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes. Chemical Reviews, 2015, 115, 13093-13164.	23.0	116
53	Time-dependent density functional theory investigation of the absorption, fluorescence, and phosphorescence spectra of solvated coumarins. Journal of Chemical Physics, 2006, 125, 164324.	1.2	115
54	Communication: One third: A new recipe for the PBEO paradigm. Journal of Chemical Physics, 2013, 138, 021104.	1.2	115

#	Article	IF	CITATIONS
55	The meta-GGA functional: Thermochemistry with a kinetic energy density dependent exchange-correlation functional. Journal of Chemical Physics, 2000, 112, 2643-2649.	1.2	114
56	TD-DFT Vibronic Couplings in Anthraquinones: From Basis Set and Functional Benchmarks to Applications for Industrial Dyes. Journal of Chemical Theory and Computation, 2011, 7, 1882-1892.	2.3	113
57	Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description. Journal of Chemical Theory and Computation, 2015, 11, 5782-5790.	2.3	112
58	Surface-dependent oxidation of H 2 on CeO 2 surfaces. Journal of Catalysis, 2013, 297, 193-201.	3.1	109
59	Phototriggered Linkage Isomerization in Rutheniumâ^'Dimethylsulfoxyde Complexes:Â Insights from Theory. Journal of Physical Chemistry A, 2003, 107, 11182-11190.	1.1	108
60	Spectroscopic Properties of Porphyrin-Like Photosensitizers:Â Insights from Theory. Journal of Physical Chemistry B, 2006, 110, 2398-2404.	1.2	106
61	Modeling Dye-Sensitized Solar Cells: From Theory to Experiment. Journal of Physical Chemistry Letters, 2013, 4, 1044-1050.	2.1	104
62	Nonempirical Double-Hybrid Functionals: An Effective Tool for Chemists. Accounts of Chemical Research, 2016, 49, 1503-1513.	7.6	103
63	Performance of the `parameter free' PBEO functional for the modeling of molecular properties of heavy metals. Chemical Physics Letters, 2000, 325, 99-105.	1.2	100
64	Orthorhombic <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2012, 109, 247606.	2.9	100
65	Double-hybrid density functionals: merging wavefunction and density approaches to get the best of both worlds. Physical Chemistry Chemical Physics, 2013, 15, 14581.	1.3	100
66	Proton transfer in model hydrogen-bonded systems by a density functional approach. Chemical Physics Letters, 1994, 231, 295-300.	1.2	99
67	A hybrid density functional study of the firstâ€row transitionâ€metal monocarbonyls. Journal of Chemical Physics, 1995, 103, 10605-10613.	1.2	99
68	Comment on "About the calculation of exchange coupling constants using density-functional theory: The role of the self-interaction error―[J. Chem. Phys. 123, 164110 (2005)]. Journal of Chemical Physics, 2006, 124, 107101.	1.2	99
69	Doubly hybrid density functional xDH-PBE0 from a parameter-free global hybrid model PBE0. Journal of Chemical Physics, 2012, 136, 174103.	1.2	99
70	Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes. Chemical Physics Letters, 2008, 465, 226-229.	1.2	96
71	Is the Tamm-Dancoff Approximation Reliable for the Calculation of Absorption and Fluorescence Band Shapes?. Journal of Chemical Theory and Computation, 2013, 9, 4517-4525.	2.3	95
72	Density Functional Study of Intrinsic and Environmental Effects in the Tautomeric Equilibrium of 2-Pyridone. The Journal of Physical Chemistry, 1995, 99, 15062-15068.	2.9	94

#	Article	IF	CITATIONS
73	A Theoretical Study of Bonding in Lanthanide Trihalides by Density Functional Methods. Journal of Physical Chemistry A, 1998, 102, 6812-6820.	1.1	94
74	Communication: Rationale for a new class of double-hybrid approximations in density-functional theory. Journal of Chemical Physics, 2011, 135, 101102.	1.2	93
75	Implementation and validation of the Lacks-Gordon exchange functional in conventional density functional and adiabatic connection methods. Journal of Computational Chemistry, 1998, 19, 418-429.	1.5	91
76	Comparative studies of quasi-relativistic density functional methods for the description of lanthanide and actinide complexes. Journal of Computational Chemistry, 2003, 24, 850-858.	1.5	89
77	Localized Excited Charge Carriers Generate Ultrafast Inhomogeneous Strain in the Multiferroic <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>BiFeO</mml:mi></mml:mrow><mml:mrow> Physical Review Letters, 2014, 112, 097602.</mml:mrow></mml:msub></mml:mrow></mml:math>	<m#129< td=""><td>3<!--89/mml:mn--></td></m#129<>	3 89/mml:mn
78	Accurate static polarizabilities by density functional theory: assessment of the PBEO model. Chemical Physics Letters, 1999, 307, 265-271.	1.2	86
79	DFT and Proton Transfer Reactions: A Benchmark Study on Structure and Kinetics. Journal of Chemical Theory and Computation, 2012, 8, 3082-3088.	2.3	85
80	Validation and assessment of an accurate approach to the correlation problem in density functional theory: The Kriger–Chen–Iafrate–Savin model. Journal of Chemical Physics, 2002, 117, 10465-10473.	1.2	83
81	Theoretical study of direct and water-assisted isomerization of formaldehyde radical cation. A comparison between density functional and post-Hartree-Fock approaches. Chemical Physics Letters, 1994, 224, 432-438.	1.2	82
82	Impact of Vibronic Couplings on Perceived Colors: Two Anthraquinones as a Working Example. Journal of Physical Chemistry Letters, 2012, 3, 468-471.	2.1	82
83	Predictions of Optical Excitations in Transition-Metal Complexes with Time Dependent-Density Functional Theory:A Influence of Basis Sets. Journal of Chemical Theory and Computation, 2005, 1, 953-962.	2.3	80
84	Toward a Clear-Cut Vision on the Origin of 2,6-Di(1,2,4-triazin-3-yl)pyridine Selectivity for Trivalent Actinides:Â Insights from Theory. Inorganic Chemistry, 2006, 45, 8517-8522.	1.9	77
85	Assessment of Several Hybrid DFT Functionals for the Evaluation of Bond Length Alternation of Increasingly Long Oligomers. Journal of Physical Chemistry A, 2006, 110, 5952-5959.	1.1	77
86	Absorption Spectra of First-Row Transition Metal Complexes of Bacteriochlorins:  A Theoretical Analysis. Journal of Physical Chemistry B, 2005, 109, 12214-12221.	1.2	76
87	A Comprehensive Theoretical View of the Bonding in Actinide Molecular Complexes. Journal of the American Chemical Society, 2006, 128, 2190-2191.	6.6	76
88	On the TD-DFT Accuracy in Determining Single and Double Bonds in Excited-State Structures of Organic Molecules. Journal of Physical Chemistry A, 2010, 114, 13402-13410.	1.1	76
89	Ab Initio Molecular Dynamics Study of a Highly Concentrated LiCl Aqueous Solution. Journal of Chemical Theory and Computation, 2008, 4, 1040-1048.	2.3	74
90	Accuracy of TD-DFT Geometries: A Fresh Look. Journal of Chemical Theory and Computation, 2018, 14, 3715-3727.	2.3	74

#	Article	IF	CITATIONS
91	Oxidation mechanism of diethyl ether: a complex process for a simple molecule. Physical Chemistry Chemical Physics, 2011, 13, 14636.	1.3	73
92	Theoretical Unraveling of Selective 1-Butene Oligomerization Catalyzed by Ironâ^'Bis(arylimino)pyridine. Organometallics, 2009, 28, 5358-5367.	1.1	72
93	Insights into Working Principles of Ruthenium Polypyridyl Dye-Sensitized Solar Cells from First Principles Modeling. Journal of Physical Chemistry C, 2011, 115, 4297-4306.	1.5	71
94	Absorption and emission spectra in gas-phase and solution using TD-DFT: Formaldehyde and benzene as case studies. Chemical Physics Letters, 2006, 421, 272-276.	1.2	70
95	Evaluating push–pull dye efficiency using TD-DFT and charge transfer indices. Physical Chemistry Chemical Physics, 2013, 15, 20210.	1.3	68
96	Functionalized Graphene as an Electronâ€Cascade Acceptor for Airâ€Processed Organic Ternary Solar Cells. Advanced Functional Materials, 2015, 25, 3870-3880.	7.8	67
97	Ionic versus covalent character in lanthanide complexes. A hybrid density functional study. Chemical Physics Letters, 1997, 268, 61-68.	1.2	66
98	First-row transition-metal hydrides: A challenging playground for new theoretical approaches. International Journal of Quantum Chemistry, 1997, 61, 443-451.	1.0	65
99	Theoretical Study of the Addition of Hydrogen Cyanide to Methanimine in the Gas Phase and in Aqueous Solution. Journal of the American Chemical Society, 2000, 122, 324-330.	6.6	65
100	Complete structural and magnetic characterization of biological radicals in solution by an integrated quantum mechanical approach: Glycyl radical as a case study. Journal of Chemical Physics, 2004, 121, 6710-6718.	1.2	65
101	Designing Multifunctional Expanded Pyridiniums: Properties of Branched and Fused Head-to-Tail Bipyridiniums. Journal of the American Chemical Society, 2010, 132, 16700-16713.	6.6	65
102	The geometries, absorption and fluorescence wavelengths of solvated fluorescent coumarins: A CIS and TD-DFT comparative study. Chemical Physics Letters, 2007, 438, 208-212.	1.2	63
103	Effective electron displacements: A tool for time-dependent density functional theory computational spectroscopy. Journal of Chemical Physics, 2014, 140, 104101.	1.2	63
104	A comprehensive DFT investigation of bulk and low-index surfaces of ZrO ₂ polymorphs. Journal of Computational Chemistry, 2015, 36, 9-21.	1.5	61
105	Range-separated hybrid density functionals made simple. Journal of Chemical Physics, 2019, 150, 201102.	1.2	60
106	Theoretical Insights on O2and CO Adsorption on Neutral and Positively Charged Gold Clusters. Journal of Physical Chemistry B, 2006, 110, 12240-12248.	1.2	58
107	Absorption and emission spectra of 1,8-naphthalimide fluorophores: A PCM-TD-DFT investigation. Chemical Physics, 2010, 372, 61-66.	0.9	58
108	Structure and magnetic properties of benzyl, anilino, and phenoxyl radicals by density functional computations. Journal of Chemical Physics, 1998, 109, 10244-10254.	1.2	57

#	Article	IF	CITATIONS
109	Spectral properties of self-assembled squaraine–tetralactam: a theoretical assessment. Physical Chemistry Chemical Physics, 2009, 11, 1258.	1.3	57
110	Excited-State Geometries of Heteroaromatic Compounds: A Comparative TD-DFT and SAC-CI Study. Journal of Chemical Theory and Computation, 2013, 9, 2368-2379.	2.3	57
111	The nature of vertical excited states of dyes containing metals for DSSC applications: insights from TD-DFT and density based indexes. Physical Chemistry Chemical Physics, 2014, 16, 14435.	1.3	57
112	Theoretical Exploration of Type I/Type II Dual Photoreactivity of Promising Ru(II) Dyads for PDT Approach. Inorganic Chemistry, 2016, 55, 11185-11192.	1.9	57
113	Theoretical Investigation on the Role of the Central Carbon Atom and Close Protein Environment on the Nitrogen Reduction in Mo Nitrogenase. ACS Catalysis, 2016, 6, 1567-1577.	5.5	57
114	Density functional approach to the structures and EPR parameters of open shell systems. The case of fluorovinyl radicals. Chemical Physics Letters, 1993, 212, 5-11.	1.2	56
115	On the TD-DFT UV/vis spectra accuracy: the azoalkanes. Theoretical Chemistry Accounts, 2008, 120, 405-410.	0.5	56
116	A new parameter-free correlation functional based on an average atomic reduced density gradient analysis. Journal of Chemical Physics, 2008, 128, 034101.	1.2	56
117	From Classical Density Functionals to Adiabatic Connection Methods. The State of the Art Advances in Quantum Chemistry, 2000, 36, 45-75.	0.4	53
118	Understanding Aggregation-Induced Emission in Molecular Crystals: Insights from Theory. Journal of Physical Chemistry C, 2017, 121, 5747-5752.	1.5	52
119	Assessment of recently developed density functional approaches for the evaluation of the bond length alternation in polyacetylene. Chemical Physics Letters, 2005, 405, 376-381.	1.2	51
120	Exploring the Metric of Excited State Proton Transfer Reactions. Journal of Physical Chemistry B, 2013, 117, 16165-16173.	1.2	51
121	Performance of the Ï"-dependent functionals in predicting the magnetic coupling of ionic antiferromagnetic insulators. Journal of Chemical Physics, 2004, 120, 3811-3816.	1.2	50
122	Self-interaction error in density functional theory: a mean-field correction for molecules and large systems. Chemical Physics, 2005, 309, 67-76.	0.9	50
123	Morphological and charge transport properties of amorphous and crystalline P3HT and PBTTT: insights from theory. Physical Chemistry Chemical Physics, 2015, 17, 18742-18750.	1.3	50
124	Transport properties in manganite thin films. Physical Review B, 2005, 71, .	1.1	49
125	A mean-field self-interaction correction in density functional theory: implementation and validation for molecules. Chemical Physics Letters, 2003, 380, 12-20.	1.2	48
126	Solvent effects on an SN2 reaction profile. Chemical Physics Letters, 1998, 297, 1-7.	1.2	46

#	Article	IF	CITATIONS
127	Density Functional Study of Diborane, Dialane, and Digallane. The Journal of Physical Chemistry, 1994, 98, 13185-13188.	2.9	45
128	Theoretical Study of the Decomposition Reactions in Substituted Nitrobenzenes. Journal of Physical Chemistry A, 2008, 112, 4054-4059.	1.1	45
129	Range-Separated Double-Hybrid Functional from Nonempirical Constraints. Journal of Chemical Theory and Computation, 2018, 14, 4052-4062.	2.3	45
130	Comparison of convetional and hybrid density functional approaches. Cationic hydrides of first-row transition metals as a case study. Chemical Physics Letters, 1996, 249, 290-296.	1.2	44
131	Catalytic and bulk solvent effects on proton transfer: Formamide as a case study. Journal of Computational Chemistry, 1997, 18, 1993-2000.	1.5	44
132	Intramolecular Spin Alignment in Photomagnetic Molecular Devices: A Theoretical Study. Chemistry - A European Journal, 2007, 13, 5360-5377.	1.7	44
133	Computational Protocol for Modeling Thermochromic Molecular Crystals: Salicylidene Aniline As a Case Study. Journal of Chemical Theory and Computation, 2014, 10, 5577-5585.	2.3	44
134	Electronic Band Shapes Calculated with Optimally Tuned Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 2014, 10, 4599-4608.	2.3	44
135	Non-radiative decay paths in rhodamines: new theoretical insights. Physical Chemistry Chemical Physics, 2014, 16, 20681-20688.	1.3	44
136	Theoretical Investigation of Hole Transporter Materials for Energy Devices. Journal of Physical Chemistry C, 2015, 119, 23890-23898.	1.5	44
137	Systematic Improvement of Density Functionals through Parameter-Free Hybridization Schemes. Journal of Physical Chemistry Letters, 2015, 6, 3540-3545.	2.1	44
138	Charge transfer excitations in TDDFT: A ghostâ€hunter index. Journal of Computational Chemistry, 2017, 38, 2151-2156.	1.5	44
139	Photoinduced Processes within Compact Dyads Based on Triphenylpyridinium-Functionalized Bipyridyl Complexes of Ruthenium(II). Chemistry - A European Journal, 2005, 11, 3711-3727.	1.7	43
140	Fluorescence of 1,8-naphthalimide: A PCM-TD-DFT investigation. Chemical Physics Letters, 2007, 448, 3-6.	1.2	43
141	Modeling ZnO phases using a periodic approach: From bulk to surface and beyond. Journal of Chemical Physics, 2009, 131, 044708.	1.2	43
142	A Theoretical Study of the Decomposition Mechanisms in Substituted o-Nitrotoluenes. Journal of Physical Chemistry A, 2009, 113, 13621-13627.	1.1	43
143	The ammonium nitrate and its mechanism of decomposition in the gas phase: a theoretical study and a DFT benchmark. Physical Chemistry Chemical Physics, 2013, 15, 10849.	1.3	43
144	Structure and ESR features of glycine radical in its zwitterionic form. Chemical Physics Letters, 1995, 242, 351-354.	1.2	42

#	Article	IF	CITATIONS
145	Bi-isonicotinic Acid on Anatase (101):  Insights from Theory. Journal of Physical Chemistry C, 2007, 111, 15034-15042.	1.5	42
146	Phosphorescent Binuclear Iridium Complexes Based on Terpyridine–Carboxylate: An Experimental and Theoretical Study. Inorganic Chemistry, 2011, 50, 8197-8206.	1.9	42
147	Influence of the Formation of the Halogen Bond ArX- - -N on the Mechanism of Diketonate Ligated Copper-Catalyzed Amination of Aromatic Halides. Organometallics, 2012, 31, 914-920.	1.1	42
148	Double hybrids and timeâ€dependent density functional theory: An implementation and benchmark on charge transfer excited states. Journal of Computational Chemistry, 2020, 41, 1242-1251.	1.5	42
149	A reliable method for fitting TD-DFT transitions to experimental UV–visible spectra. Computational and Theoretical Chemistry, 2010, 954, 52-56.	1.5	41
150	Application of recent double-hybrid density functionals to low-lying singlet-singlet excitation energies of large organic compounds. Journal of Chemical Physics, 2013, 139, 164104.	1.2	41
151	Prediction of the thermal decomposition of organic peroxides by validated QSPR models. Journal of Hazardous Materials, 2014, 276, 216-224.	6.5	41
152	Characterizing Agosticity Using the Quantum Theory of Atoms in Molecules: Bond Critical Points and Their Local Properties. Journal of Physical Chemistry A, 2012, 116, 5472-5479.	1.1	40
153	B,Nâ€Codoped graphene as catalyst for the oxygen reduction reaction: Insights from periodic and cluster DFT calculations. Journal of Computational Chemistry, 2018, 39, 637-647.	1.5	39
154	Aggregation-caused quenching <i>versus</i> crystallization induced emission in thiazolo[5,4- <i>b</i>]thieno[3,2- <i>e</i>]pyridine (TTP) derivatives: theoretical insights. Physical Chemistry Chemical Physics, 2019, 21, 46-56.	1.3	39
155	Structures and properties of lanthanide and actinide complexes by a new density functional approach: Lanthanum, gadolinium, lutetium, and thorium halides as case studies. Journal of Computational Chemistry, 2000, 21, 1153-1166.	1.5	38
156	Evidence for the Iron(III) Oxidation State in Bis(imino)pyridine Catalysts. A Density Functional Theory Study. Organometallics, 2008, 27, 3368-3377.	1.1	38
157	Absorption spectra of azobenzenes simulated with timeâ€dependent density functional theory. International Journal of Quantum Chemistry, 2011, 111, 4224-4240.	1.0	38
158	Describing Excited State Intramolecular Proton Transfer in Dual Emissive Systems: A Density Functional Theory Based Analysis. Journal of Physical Chemistry B, 2015, 119, 2459-2466.	1.2	38
159	CO Oxidation on Cationic Gold Clusters: A Theoretical Study. Journal of Physical Chemistry C, 2008, 112, 18061-18066.	1.5	37
160	On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations. Journal of Hazardous Materials, 2009, 171, 845-850.	6.5	37
161	Is There Still Room for Parameter Free Double Hybrids? Performances of PBE0-DH and B2PLYP over Extended Benchmark Sets. Journal of Chemical Theory and Computation, 2013, 9, 3444-3452.	2.3	37
162	Density functional theory: An effective theoretical tool for the study of ? radicals. International Journal of Quantum Chemistry, 1994, 52, 963-971.	1.0	36

#	Article	IF	CITATIONS
163	Low temperature magnetism in the perovskite substrate DyScO3. Applied Physics Letters, 2009, 94, .	1.5	36
164	Theoretical determination of the pKas of the 8-hydroxyquinoline-5-sulfonic acid: A DFT based approach. Chemical Physics Letters, 2009, 472, 30-34.	1.2	36
165	Basis set and functional effects on excitedâ€state properties: Three bicyclic chromogens as working examples. International Journal of Quantum Chemistry, 2012, 112, 2135-2141.	1.0	36
166	Benchmark Study on the Triplet Excited-State Geometries and Phosphorescence Energies of Heterocyclic Compounds: Comparison Between TD-PBEO and SAC-CI. Journal of Chemical Theory and Computation, 2014, 10, 3969-3979.	2.3	36
167	Structure and ESR Features of Glycine Radical. Journal of the American Chemical Society, 1995, 117, 12618-12624.	6.6	35
168	Photophysical Properties of 8-Hydroxyquinoline-5-sulfonic Acid as a Function of the pH: A TD-DFT Investigation. Journal of Physical Chemistry A, 2010, 114, 5932-5939.	1.1	35
169	Oxidation of Ethylbenzene to Acetophenone with N-Doped Graphene: Insight from Theory. Journal of Physical Chemistry C, 2014, 118, 12275-12284.	1.5	35
170	Tuning of Structural and Magnetic Properties of Nitronyl Nitroxides by the Environment. A Combined Experimental and Computational Study. Journal of Physical Chemistry A, 1999, 103, 3481-3488.	1.1	34
171	Fast and Reliable Theoretical Determination of p <i>K</i> _a * for Photoacids. Journal of Physical Chemistry A, 2008, 112, 794-796.	1.1	34
172	Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms. Journal of Molecular Modeling, 2011, 17, 2443-2453.	0.8	34
173	Intermolecular proton shuttling in excited state proton transfer reactions: insights from theory. Physical Chemistry Chemical Physics, 2014, 16, 8661-8666.	1.3	34
174	Synergistic Effects of Metals in a Promising Ru ^{II} â^'Pt ^{II} Assembly for a Combined Anticancer Approach: Theoretical Exploration of the Photophysical Properties. Chemistry - A European Journal, 2016, 22, 9162-9168.	1.7	34
175	Hydrogen abstraction from ethylbenzene by imide-N-oxyl radicals with and without O2: a DFT theoretical study. Perkin Transactions II RSC, 2002, , 1967-1972.	1.1	33
176	Effect of self-interaction error in the evaluation of the bond length alternation in trans-polyacetylene using density-functional theory. Journal of Chemical Physics, 2005, 123, 121102.	1.2	33
177	A Theoretical Characterization of Covalency in Rare Earth Complexes through Their Absorption Electronic Properties:  fâ^'f Transitions. Inorganic Chemistry, 2006, 45, 7382-7388.	1.9	33
178	DFT modeling of the relative affinity of nitrogen ligands for trivalent f elements: an energetic point of view. New Journal of Chemistry, 2007, 31, 1738.	1.4	33
179	Increasing physical constraints and improving performances in a parameter-free GGA functional. Chemical Physics Letters, 2008, 460, 536-539.	1.2	33
180	Pd-Catalyzed Homocoupling Reaction of Arylboronic Acid: Insights from Density Functional Theory. Journal of Physical Chemistry A, 2008, 112, 12896-12903.	1.1	33

#	Article	IF	CITATIONS
181	On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility. Chemical Physics Letters, 2009, 467, 407-411.	1.2	33
182	Discriminating role of bases in diketonate copper(i)-catalyzed C–O couplings: phenol versus diarylether. Dalton Transactions, 2013, 42, 5348.	1.6	33
183	Photophysical properties of NIR-emitting fluorescence probes: insights from TD-DFT. Physical Chemistry Chemical Physics, 2013, 15, 10019.	1.3	33
184	Speed-Up of the Excited-State Benchmarking: Double-Hybrid Density Functionals as Test Cases. Journal of Chemical Theory and Computation, 2017, 13, 5539-5551.	2.3	33
185	Validation of Hybrid Density Functional/Hartreeâ^'Fock Approaches for the Study of Homogeneous Catalysis. The Journal of Physical Chemistry, 1996, 100, 2094-2099.	2.9	32
186	Intrinsic and environmental effects in the physico-chemical properties of nitroxides. The case of 2-phenyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide. Chemical Physics Letters, 1999, 310, 159-165.	1.2	32
187	Conformationally Gated Photoinduced Processes within Photosensitizerâ^'Acceptor Dyads Based on Osmium(II) Complexes with Triarylpyridinio-Functionalized Terpyridyl Ligands:A Insights from Theoretical Analysis. Inorganic Chemistry, 2006, 45, 5538-5551.	1.9	32
188	Theoretical Analysis of the Electronic Properties of N3 Derivatives. Journal of Physical Chemistry A, 2007, 111, 13106-13111.	1.1	32
189	Modeling basic components of solid oxide fuel cells using density functional theory: Bulk and surface properties of CeO2. Surface Science, 2012, 606, 305-311.	0.8	32
190	A comparison of geometric parameters from PBE-based doubly hybrid density functionals PBEO-DH, PBEO-2, and xDH-PBEO. Journal of Chemical Physics, 2013, 139, 174106.	1.2	32
191	Intrinsic and Dynamical Reaction Pathways of an Excited State Proton Transfer. Journal of Physical Chemistry B, 2015, 119, 2650-2657.	1.2	32
192	Metrics for Molecular Electronic Excitations: A Comparison between Orbital- and Density-Based Descriptors. Journal of Physical Chemistry A, 2017, 121, 7543-7549.	1.1	32
193	A theoretical investigation of potential energy surfaces governing the photochemical tautomerization of 2-pyridone. Chemical Physics Letters, 1994, 226, 399-404.	1.2	31
194	Conformational Behavior and Magnetic Properties of Organic Radicals Derived from Amino Acid Residues. The Dipeptide Analog of Glycine Radical. Journal of the American Chemical Society, 1995, 117, 1083-1089.	6.6	31
195	Toward a Combined DFT/QTAIM Description of Agostic Bonds: The Critical Case of a Nb(III) Complex. Journal of Physical Chemistry A, 2009, 113, 12322-12327.	1.1	31
196	Vibrational analysis of glycine radical: a comparative ab initio static and dynamic study. Physical Chemistry Chemical Physics, 2009, 11, 4375.	1.3	31
197	Quadratic integrand double-hybrid made spin-component-scaled. Journal of Chemical Physics, 2016, 144, 124104.	1.2	31
198	Importance of Orbital Optimization for Double-Hybrid Density Functionals: Application of the OO-PBE-QIDH Model for Closed- and Open-Shell Systems. Journal of Physical Chemistry A, 2016, 120, 1756-1762.	1.1	31

#	Article	IF	CITATIONS
199	Partnering dispersion corrections with modern parameter-free double-hybrid density functionals. Physical Chemistry Chemical Physics, 2017, 19, 13481-13487.	1.3	31
200	Effects of Substituents on Transport Properties of Molecular Materials for Organic Solar Cells: A Theoretical Investigation. Chemistry of Materials, 2017, 29, 673-681.	3.2	31
201	A theoretical study of proton transfer in [2,2′-bipyridyl]-3,3′-diol. Chemical Physics Letters, 1995, 241, 1-6.	1.2	30
202	Theoretical description of metal–ligand bonding within f-element complexes: A successful and necessary interplay between theory and experiment. Comptes Rendus Chimie, 2007, 10, 888-896.	0.2	30
203	Single-Step versus Stepwise Two-Electron Reduction of Polyarylpyridiniums: Insights from the Steric Switching of Redox Potential Compression. Journal of the American Chemical Society, 2012, 134, 2691-2705.	6.6	30
204	Density Functional Calculations of Isotropic Hyperfine Coupling Constants in .betaKetoenolyl Radicals. The Journal of Physical Chemistry, 1994, 98, 8648-8652.	2.9	29
205	Revisiting the relationship between the bond length alternation and the first hyperpolarizability with rangeâ€separated hybrid functionals. Journal of Computational Chemistry, 2008, 29, 921-925.	1.5	29
206	Charge transport in poly-imidazole membranes: a fresh appraisal of the Grotthuss mechanism. Physical Chemistry Chemical Physics, 2012, 14, 10910.	1.3	29
207	Computational Molecular Electronic Spectroscopy with TD-DFT. Topics in Current Chemistry, 2015, 368, 347-375.	4.0	29
208	sp-hybridized carbon allotrope molecular structures: An ongoing challenge for density-functional approximations. Journal of Chemical Physics, 2019, 151, 211104.	1.2	29
209	Reaching Optimal Lightâ€Induced Intramolecular Spin Alignment within Photomagnetic Molecular Device Prototypes. Chemistry - A European Journal, 2008, 14, 11385-11405.	1.7	28
210	Mechanistic Insights into Ci£¿N Coupling Catalyzed by 1,3â€Diketonateâ€Ligated Copper: Unprecedented Activation of Aryl Iodide. ChemCatChem, 2011, 3, 305-309.	1.8	28
211	Electrostatic Embedding To Model the Impact of Environment on Photophysical Properties of Molecular Crystals: A Self-Consistent Charge Adjustment Procedure. Journal of Chemical Theory and Computation, 2016, 12, 3316-3324.	2.3	28
212	Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes. Journal of Chemical Physics, 2018, 148, 041103.	1.2	28
213	Proton transfer in small model systems: A density functional study. International Journal of Quantum Chemistry, 1995, 56, 697-705.	1.0	27
214	Theoretical Insights on the Electronic Properties of Eosin Y, an Organic Dye for Photovoltaic Applications. Journal of Physical Chemistry A, 2008, 112, 7264-7270.	1.1	27
215	A DFT investigation of CO oxidation over neutral and cationic gold clusters. Computational and Theoretical Chemistry, 2009, 903, 34-40.	1.5	27
216	QSPR modeling of thermal stability of nitroaromatic compounds: DFT vs. AM1 calculated descriptors. Journal of Molecular Modeling, 2010, 16, 805-812.	0.8	27

#	Article	IF	CITATIONS
217	Theoretical Insights into Branched and Fused Expanded Pyridiniums by the Means of Density Functional Theory. Journal of Physical Chemistry A, 2010, 114, 8434-8443.	1.1	27
218	Chemically intuitive indices for charge-transfer excitation based on SAC-CI and TD-DFT calculations. Journal of Computational Chemistry, 2013, 34, 2498-2501.	1.5	27
219	Role of Hartree-Fock exchange in density functional theory. Chemical Physics Letters, 1994, 230, 189-195.	1.2	26
220	Solvent effects on the conformational behavior of model peptides. A comparison between different continuum models. Chemical Physics Letters, 1996, 263, 113-118.	1.2	26
221	Performance of a new hybrid Hartree–Fock/Kohn–Sham model (B98) in predicting vibrational frequencies, polarisabilities and NMR chemical shifts. Chemical Physics Letters, 1999, 311, 69-76.	1.2	26
222	A new hybrid functional including a meta-GGA approach. Chemical Physics Letters, 2002, 362, 72-78.	1.2	26
223	A theoretical study of the bonding in trivalent americium complexes. Chemical Physics Letters, 2004, 396, 452-457.	1.2	26
224	First-principle molecular dynamics of the Berry pseudorotation: Insights on 19F NMR in SF4. Journal of Chemical Physics, 2004, 120, 9167-9174.	1.2	26
225	Ammonia on Ni(111) surface studied by first principles: Bonding, multilayers structure and comparison with experimental IR and XPS data. Surface Science, 2009, 603, 3025-3034.	0.8	26
226	Absorption spectra of recently synthesised organic dyes: A TDâ€ÐFT study. International Journal of Quantum Chemistry, 2010, 110, 2121-2129.	1.0	26
227	Modeling Proton Transfer in Imidazole-like Dimers: A Density Functional Theory Study. Journal of Physical Chemistry A, 2011, 115, 2627-2634.	1.1	26
228	Revisiting the importance of dye binding mode in dye-sensitized solar cells: a periodic viewpoint. Journal of Materials Chemistry, 2012, 22, 12205.	6.7	26
229	La0.7Sr0.3MnO3 suspended microbridges for uncooled bolometers made using reactive ion etching of the silicon substrates. Microelectronic Engineering, 2013, 111, 101-104.	1.1	26
230	Modeling emission features of salicylidene aniline molecular crystals: A QM/QM' approach. Journal of Computational Chemistry, 2016, 37, 861-870.	1.5	26
231	Exploring the limits of recent exchange–correlation functionals in modeling lithium/benzene interaction. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	26
232	Violation of Hund's rule in molecules: Predicting the excited-state energy inversion by TD-DFT with double-hybrid methods. Journal of Chemical Physics, 2022, 156, 034105.	1.2	26
233	Room temperature metal-insulator transition in as grown (La) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 107 molecular beam epitaxy. European Physical Journal B, 2004, 40, 11-17.	Td (\$mat 0.6	hsf{_{1-x}}\$ 25
234	Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes. Journal of Molecular Graphics and Modelling, 2010, 28, 465-471.	1.3	25

#	Article	IF	CITATIONS
235	Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds. Journal of Hazardous Materials, 2012, 235-236, 169-177.	6.5	25
236	Toward a general protocol for the study of static and dynamic properties of hydrogen-bonded systems. International Journal of Quantum Chemistry, 1997, 61, 429-442.	1.0	24
237	Comparative Static and Dynamic Study of a Prototype SN2 Reaction. Journal of Chemical Theory and Computation, 2006, 2, 1220-1227.	2.3	24
238	Environmental effects on electronic absorption spectra using DFT: An organic and positively charged fused polycyclic chromophore as a case study. Computational and Theoretical Chemistry, 2009, 914, 94-99.	1.5	24
239	Benchmarking the DFT methodology for assessing antioxidant-related properties: quercetin and edaravone as case studies. Journal of Molecular Modeling, 2016, 22, 250.	0.8	24
240	Synergistic Effects in Pt ^{II} –Porphyrinoid Dyes as Candidates for a Dualâ€Action Anticancer Therapy: A Theoretical Exploration. Chemistry - A European Journal, 2017, 23, 15124-15132.	1.7	24
241	Range-separated hybrid and double-hybrid density functionals: A quest for the determination of the range-separation parameter. Journal of Chemical Physics, 2020, 152, 244124.	1.2	24
242	Intrinsic and Environmental Effects on the Kinetic and Thermodynamics of Linkage Isomerization in Nitritopentaamminecobalt(III) Complex. Journal of Physical Chemistry A, 2001, 105, 1086-1092.	1.1	23
243	Density-functional-based molecular-dynamics simulations of molten salts. Journal of Chemical Physics, 2005, 123, 134510.	1.2	23
244	Molecular Dynamics Study of the Coordination Sphere of Trivalent Lanthanum in a Highly Concentrated LiCl Aqueous Solution: a Combined Classical and Ab Initio Approach. Journal of Physical Chemistry B, 2008, 112, 10603-10607.	1.2	23
245	Communication: Bond length alternation of conjugated oligomers: Another step on the fifth rung of Perdew's ladder of functional. Journal of Chemical Physics, 2010, 133, 151104.	1.2	23
246	Predicting the Thermal Stability of Nitroaromatic Compounds Using Chemoinformatic Tools. Molecular Informatics, 2011, 30, 623-634.	1.4	23
247	Direct catalytic effect and fine modulation of solvent in the keto-enol isomerization of amides. Computational and Theoretical Chemistry, 1995, 330, 325-333.	1.5	22
248	Structures, hyperfine parameters, and inversion barriers of cyclopropyl and oxiranyl radicals. Journal of Chemical Physics, 1996, 105, 3168-3174.	1.2	22
249	The mechanism of spin polarization in aromatic free radicals. Theoretical Chemistry Accounts, 2000, 104, 207-209.	0.5	22
250	Interplay of Intrinsic and Environmental Effects on the Magnetic Properties of Free Radicals Issuing from H-Atom Addition to Cytosine. Journal of the American Chemical Society, 2001, 123, 7113-7117.	6.6	22
251	Spectral properties of bipyridyl ligands by time-dependent density functional theory. Chemical Physics Letters, 2006, 417, 445-451.	1.2	22
252	Comparison of theoretical approaches for computing the bond length alternation of polymethineimine. Chemical Physics, 2007, 332, 79-85.	0.9	22

#	Article	IF	CITATIONS
253	Revisiting the nonlinear optical properties of polybutatriene and polydiacetylene with density functional theory. Chemical Physics Letters, 2008, 456, 101-104.	1.2	22
254	Confinement Effects on UV–Visible Absorption Spectra: β-Carotene Inside Carbon Nanotube as a Test Case. Journal of Physical Chemistry Letters, 2013, 4, 1239-1243.	2.1	22
255	Revealing the properties of the cubic ZrO2 (111) surface by periodic DFT calculations: reducibility and stabilization through doping with aliovalent Y2O3. RSC Advances, 2015, 5, 13941-13951.	1.7	22
256	Double Hybrid Functionals and the Î-System Bond Length Alternation Challenge: Rivaling Accuracy of Post-HF Methods. Journal of Chemical Theory and Computation, 2015, 11, 832-838.	2.3	22
257	Conduction Mechanisms in Oxide–Carbonate Electrolytes for SOFC: Highlighting the Role of the Interface from First-Principles Modeling. Journal of Physical Chemistry C, 2018, 122, 10067-10077.	1.5	22
258	How are the charge transfer descriptors affected by the quality of the underpinning electronic density?. Journal of Computational Chemistry, 2018, 39, 735-742.	1.5	22
259	Assessing challenging intra―and <scp>interâ€molecular chargeâ€ŧransfer</scp> excitations energies with <scp>doubleâ€hybrid</scp> density functionals. Journal of Computational Chemistry, 2021, 42, 970-981.	1.5	22
260	A theoretical analysis of excited state proton transfer in 3-hydroxyflavone. Promoting effect of a low frequency bending mode. Journal of Mathematical Chemistry, 1992, 10, 249-274.	0.7	21
261	Theoretical Study of the Uranyl Complexation by Hydroxamic and Carboxylic Acid Groups. Inorganic Chemistry, 2008, 47, 7983-7991.	1.9	21
262	Copper–amyloid-β complex may catalyze peroxynitrite production in brain: evidence from molecular modeling. Physical Chemistry Chemical Physics, 2014, 16, 10169-10174.	1.3	21
263	Ceneral Density-Based Index to Analyze Charge Transfer Phenomena: From Models to Butterfly Molecules. Journal of Chemical Theory and Computation, 2020, 16, 4543-4553.	2.3	21
264	Equilibrium solvent effect in the framework of density functional theory. Application to the study of the thermodynamics of some organic and inorganic tautomeric equilibria. Chemical Physics Letters, 1994, 223, 54-60.	1.2	20
265	Mapping the many-electron generalised spin-exchange Hamiltonian to accurate post-HF calculations. Chemical Physics, 2005, 309, 133-141.	0.9	20
266	Computational Insights into Excited‣tate Protonâ€Transfer Reactions in Azo and Azomethine Dyes. ChemPhysChem, 2015, 16, 3966-3973.	1.0	20
267	Optoeletronic properties of poly(<i>N</i> â€elkenylâ€carbazole)s driven by polymer stereoregularity. Journal of Polymer Science Part A, 2018, 56, 242-251.	2.5	20
268	Electron Spin Densities and Density Functional Approximations: Open-Shell Polycyclic Aromatic Hydrocarbons as Case Study. Journal of Chemical Theory and Computation, 2020, 16, 3567-3577.	2.3	20
269	Structure and EPR parameters of CuC2H2 from a density functional approach. Chemical Physics Letters, 1995, 237, 189-194.	1.2	19
270	The performances of a parameter-free local correlation functional: The Ragot–Cortona model. Chemical Physics Letters, 2007, 439, 381-385.	1.2	19

#	Article	IF	CITATIONS
271	O ₂ Activation over Ag-Decorated CeO ₂ (111) and TiO ₂ (110) Surfaces: A Theoretical Comparative Investigation. Journal of Physical Chemistry C, 2020, 124, 25917-25930.	1.5	19
272	Protomeric equilibria in the ground and excited states of 2-pyridone. A semiempirical study including solvent effects. Journal of the Chemical Society Perkin Transactions II, 1993, , 697.	0.9	18
273	Theoretical Study of a New Building Block for Organic Conductors:Â Tetrathiapentalene and Its Radical Cation. Journal of Physical Chemistry B, 1999, 103, 6863-6869.	1.2	18
274	New computational strategies for the quantum mechanical study of biological systems in condensed phases. Theoretical and Computational Chemistry, 2001, , 467-538.	0.2	18
275	Solvation effects on cation–i€ interactions: a test study involving the quaternary ammonium ion. Theoretical Chemistry Accounts, 2004, 111, 176-181.	0.5	18
276	A Combined Experimental and Theoretical Study on the Conformational Behavior of a Calix[6]arene. Journal of Physical Chemistry A, 2006, 110, 5782-5791.	1.1	18
277	Computational Study of Alkynes Insertion into Metal-Hydride Bonds Catalyzed by Bimetallic Complexes. Inorganic Chemistry, 2010, 49, 9875-9883.	1.9	18
278	Global and local quantitative structure–property relationship models to predict the impact sensitivity of nitro compounds. Process Safety Progress, 2012, 31, 291-303.	0.4	18
279	On the development of QSPR models for regulatory frameworks: TheÂheat of decomposition of nitroaromatics as a test case. Journal of Loss Prevention in the Process Industries, 2013, 26, 1100-1105.	1.7	18
280	Anchoring groups for dyes in p-DSSC application: insights from DFT. Journal of Molecular Modeling, 2016, 22, 289.	0.8	18
281	Mixed lithium-sodium (LiNaCO3) and lithium-potassium (LiKCO3) carbonates for low temperature electrochemical applications: Structure, electronic properties and surface reconstruction from ab-initio calculations. Surface Science, 2016, 647, 66-77.	0.8	18
282	Aggregation Effects on Pigment Coatings: Pigment Red 179 as a Case Study. ACS Omega, 2019, 4, 20315-20323.	1.6	18
283	A density functional study of bonding of water to copper and nickel atoms. Computational and Theoretical Chemistry, 1997, 389, 83-89.	1.5	17
284	Predicting explosibility properties of chemicals from quantitative structureâ€property relationships. Process Safety Progress, 2010, 29, 359-371.	0.4	17
285	Modeling of charge transfer processes to understand photophysical signatures: The case of Rhodamine 110. Chemical Physics Letters, 2014, 610-611, 148-152.	1.2	17
286	Theoretical approaches for predicting the color of rigid dyes in solution. Journal of Computational Chemistry, 2017, 38, 998-1004.	1.5	17
287	Modeling the Modulation of Emission Behavior in E/Z Isomers of Dipyrrolyldiphenylethene: From Molecules to Nanoaggregates. Journal of Physical Chemistry C, 2017, 121, 25603-25616.	1.5	17
288	Modulation of intramolecular proton transfer by electronic excitation and environment: 2-Pyridone as a case study. Journal of Computational Chemistry, 1994, 15, 395-404.	1.5	16

#	Article	IF	CITATIONS
289	Transition metal monocarbonyls in the first excited electronic state. A hybrid density functional study. Chemical Physics Letters, 1995, 246, 463-468.	1.2	16
290	A theoretical study of the competition between ethylene insertion and chain transfer in cationic aluminum systems. Chemical Physics Letters, 2000, 329, 99-105.	1.2	16
291	Interconfigurational energies and ionization potentials: Test of a correlation energy functional. Chemical Physics, 2007, 337, 161-167.	0.9	16
292	Activation enthalpies of pericyclic reactions: the performances of some recently proposed functionals. Theoretical Chemistry Accounts, 2009, 122, 257-264.	0.5	16
293	First Evidence of the Oxidative Addition of FeO(N,N)2 to Aryl Halides: This Precondition Is Not a Guarantee of Efficient Iron-Catalysed C-N Cross-Coupling Reactions. European Journal of Organic Chemistry, 2011, 2011, 3768-3780.	1.2	16
294	Role of nonlocal exchange in molecular crystals: The case of two protonâ€ordered phases of ice. Journal of Computational Chemistry, 2011, 32, 2177-2185.	1.5	16
295	Experimental evidence of correlation between 1/ <i>f</i> noise level and metal-to-insulator transition temperature in epitaxial La _{0.7} Sr _{0.3} MnO ₃ thin films. Journal Physics D: Applied Physics, 2013, 46, 202001.	1.3	16
296	A mechanistic and experimental study on the diethyl ether oxidation. Process Safety Progress, 2014, 33, 64-69.	0.4	16
297	Non-parametrized functionals with empirical dispersion corrections: A happy match?. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	16
298	Unveiling the Reactivity of a Synthetic Mimic of the Oxygen Evolving Complex. Journal of Physical Chemistry Letters, 2016, 7, 5015-5021.	2.1	16
299	Molecular dynamics simulations of a lithium/sodium carbonate mixture. Journal of Molecular Modeling, 2016, 22, 61.	0.8	16
300	Towards an effective computational tool for the study of radiation-induced lesions of DNA bases. Chemical Physics Letters, 1999, 301, 255-262.	1.2	15
301	The Oxidation of Thiols by Cobalt N4â^'Complexes:Â a Correlation between Theory and Experiments. Journal of Physical Chemistry A, 2001, 105, 11304-11311.	1.1	15
302	Modeling Polymerization Reactions at Aluminum-Based Catalysts:Â Is DFT a Reliable Computational Tool?. Journal of Physical Chemistry A, 2001, 105, 9014-9023.	1.1	15
303	Environment effects on the oxidation of thiols: cobalt phthalocyanine as a test case. Chemical Physics Letters, 2003, 376, 690-697.	1.2	15
304	Theoretical modelling of photoactive molecular systems: insights using the Density Functional Theory. Comptes Rendus Chimie, 2006, 9, 226-239.	0.2	15
305	Covalent vs Electrostatic Interactions in Rare Earth Systems: A Comparative Study of U(III), U(IV), and U(V) and Nd(III) Bonding Properties by DFT and CAS-PT2 Approaches. Journal of Physical Chemistry A, 2009, 113, 14760-14765.	1.1	15
306	A density functional theory study of uranium(vi) nitrate monoamide complexes. Physical Chemistry Chemical Physics, 2011, 13, 19371.	1.3	15

#	Article	IF	CITATIONS
307	Theoretical Study of Absorption and Emission Properties of Green and Yellow Emitting Iridium(III) Complexes. Journal of Physical Chemistry A, 2011, 115, 11861-11865.	1.1	15
308	Structure of genipin in solution: a combined experimental and theoretical study. RSC Advances, 2013, 3, 13764.	1.7	15
309	Ethylene dimerization catalyzed by mixed phosphine–iminophosphorane nickel(II) complexes: a DFT investigation. Journal of Molecular Modeling, 2013, 19, 2107-2118.	0.8	15
310	A qualitative model to identify non-radiative decay channels: the spiropyran as case study. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	15
311	22Ï€-Electrons [1.1.1.1.1] pentaphyrin as a new photosensitizing agent for water disinfection: experimental and theoretical characterization. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	15
312	Modeling the photosensitizing properties of thiolate-protected gold nanoclusters. Physical Chemistry Chemical Physics, 2016, 18, 7737-7750.	1.3	15
313	Comparing the performance of TDâ€DFT and SAC I methods in the description of excited states potential energy surfaces: An excited state proton transfer reaction as case study. Journal of Computational Chemistry, 2017, 38, 1084-1092.	1.5	15
314	Small Basis Set Allowing the Recovery of Dispersion Interactions with Double-Hybrid Functionals. Journal of Chemical Theory and Computation, 2019, 15, 2944-2953.	2.3	15
315	Oximine form of the peptide bond as a transient modification in enzyme redox reactions. The Journal of Physical Chemistry, 1991, 95, 4231-4238.	2.9	14
316	A theoretical investigation of the dye-redox mediator interaction in dye-sensitized photovoltaic cells. Chemical Physics Letters, 2003, 371, 378-385.	1.2	14
317	Spin trapping by bis(benzene)chromium: A density functional study. Physical Chemistry Chemical Physics, 2003, 5, 1337.	1.3	14
318	Quantifying electron delocalization in orthogonal channels: Theoretical investigation of I_f and $I \in$ aromaticity in [C616]2+ and [C6C16]2+. Chemical Physics Letters, 2007, 435, 171-175.	1.2	14
319	Communications: Making density functional theory and the quantum theory of atoms in molecules converse: A local approach. Journal of Chemical Physics, 2010, 132, 211101.	1.2	14
320	Oxidation Mechanism of Aliphatic Ethers: Theoretical Insights on the Main Reaction Channels. Journal of Physical Chemistry A, 2012, 116, 9010-9019.	1.1	14
321	Generalized gradient exchange functionals based on the gradient-regulated connection: a new member of the TCA family. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	14
322	Assessing modern GGA functionals for solids. Journal of Molecular Modeling, 2013, 19, 2791-2796.	0.8	14
323	Optical properties of the dibenzothiazolylphenol molecular crystals through ONIOM calculations: the effect of the electrostatic embedding scheme. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	14
324	Theoretical and Experimental Study of the Reaction between Ammonium Nitrate and Sodium Salts. Industrial & Engineering Chemistry Research, 2016, 55, 12183-12190.	1.8	14

#	Article	IF	CITATIONS
325	Redâ€emitting tetraphenylethylene derivative with aggregationâ€induced enhanced emission for luminescent solar concentrators: A combined experimental and density functional theory study. Aggregate, 2022, 3, .	5.2	14
326	Electronic Energy and Local Property Errors at QTAIM Critical Points while Climbing Perdew's Ladder of Density-Functional Approximations. Journal of Chemical Theory and Computation, 2022, 18, 293-308.	2.3	14
327	Bridging the Gap between the Topological and Orbital Description of Hydrogen Bonding:Â The Case of the Formic Acid Dimer and Its Sulfur Derivatives. Journal of Physical Chemistry A, 2006, 110, 5102-5107.	1.1	13
328	Vibrational behavior of tetrahedral d0 oxo-compounds: A theoretical study. Chemical Physics Letters, 2006, 429, 52-57.	1.2	13
329	A DFT study of magnetic interactions in photoswitchable systems. Chemical Physics Letters, 2012, 542, 13-18.	1.2	13
330	From iridoids to dyes: a theoretical study on genipin reactivity. RSC Advances, 2014, 4, 11029.	1.7	13
331	The diene isomerization energies dataset: A difficult test for double-hybrid density functionals?. Journal of Chemical Physics, 2015, 142, 224105.	1.2	13
332	Controlled Tautomeric Switching in Azonaphthols Tuned by Substituents on the Phenyl Ring. ChemPhysChem, 2015, 16, 649-657.	1.0	13
333	Semiconducting and optical properties of selected binary compounds by linear response DFT+U and hybrid functional methods. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	13
334	Describing excited states of [n]cycloparaphenylenes by hybrid and double-hybrid density functionals: from isolated to weakly interacting molecules. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	13
335	Stationary point structure and energetics: Density functional study including solvent effects on the tautomerization of formamide and 2-pyridone. International Journal of Quantum Chemistry, 1995, 56, 645-653.	1.0	12
336	Representation of potential energy surfaces by discrete polynomials: proton transfer in malonaldehyde. Physical Chemistry Chemical Physics, 2000, 2, 4095-4103.	1.3	12
337	Description of the metal-ligand bonding in f-element complexes: A DFT study including scalar relativistic effects. International Journal of Quantum Chemistry, 2003, 91, 321-327.	1.0	12
338	A theoretical investigation of gadolinium (III) solvation in molten salts. Journal of Chemical Physics, 2005, 122, 224512.	1.2	12
339	Assessing the performances of some recently proposed density functionals for the description of bond dissociations involving organic radicals. International Journal of Quantum Chemistry, 2010, 110, 2320-2329.	1.0	12
340	Toward an Accurate Modeling of the Waterâ^'Zeolite Interaction: Calibrating the DFT Approach. Journal of Physical Chemistry Letters, 2010, 1, 763-768.	2.1	12
341	IR Fingerprints of U(VI) Nitrate Monoamides Complexes: A Joint Experimental and Theoretical Study. Journal of Physical Chemistry A, 2010, 114, 10878-10884.	1.1	12
342	Assessing the performances of some recently proposed density functionals for the description of organometallic structures. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	12

#	Article	IF	CITATIONS
343	Modeling Chemical Incompatibility: Ammonium Nitrate and Sodium Salt of Dichloroisocyanuric Acid as a Case Study. Industrial & Engineering Chemistry Research, 2014, 53, 13920-13927.	1.8	12
344	Excitedâ€State Proton Transfer and Intramolecular Charge Transfer in 1,3â€Diketone Molecules. ChemPhysChem, 2016, 17, 1530-1538.	1.0	12
345	Stability of the polyynic form of C ₁₈ , C ₂₂ , C ₂₆ , and C ₃₀ nanorings: a challenge tackled by range-separated double-hybrid density functionals. Physical Chemistry Chemical Physics, 2022, 24, 4515-4525.	1.3	12
346	Structural and energetic characteristics of electron deficient M2H6 compounds from a density functional approach. Chemical Physics Letters, 1994, 222, 597-602.	1.2	11
347	Proton transfer in excited electronic states: environmental effects on the tautomerization of 2-pyridone. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 80, 211-219.	2.0	11
348	Solvent effects on molecular reactivity descriptors: some test cases. Theoretical Chemistry Accounts, 2004, 111, 188-195.	0.5	11
349	Capillary electrophoresis of inorganic anions in hydro-organic media. Journal of Chromatography A, 2004, 1032, 149-158.	1.8	11
350	Solvent Effect on Density Functional Reactivity Indexes Applied to Substituted Nickel Phthalocyanines. Journal of Physical Chemistry A, 2004, 108, 6045-6051.	1.1	11
351	Can molecular quantum descriptors predict the butene selectivity in nickel(II) catalyzed ethylene dimerization? A QSPR study. International Journal of Quantum Chemistry, 2010, 110, 540-548.	1.0	11
352	<i>In Silico</i> Prediction of Catalytic Oligomerization Degrees. Organometallics, 2011, 30, 3911-3914.	1.1	11
353	Backbone effects on the charge transport in poly-imidazole membranes: a theoretical study. Journal of Materials Chemistry A, 2013, 1, 7751.	5.2	11
354	Double-Hybrid Functionals and Tailored Basis Set: Fullerene (C ₆₀) Dimer and Isomers as Test Cases. Journal of Physical Chemistry A, 2019, 123, 10040-10046.	1.1	11
355	Origin and fine tuning of the stability of five-coordinated platinum(II) and palladium(II) species. A quantum-mechanical study. Inorganica Chimica Acta, 1995, 238, 159-163.	1.2	10
356	Solvent effects on isomerization equilibria: An energetic analysis in the framework of density functional theory. Theoretica Chimica Acta, 1995, 91, 199-214.	0.9	10
357	Density-functional calculations for large systems: Can GGA functionals Be competitive with hybrid functionals?. Interdisciplinary Sciences, Computational Life Sciences, 2010, 2, 163-168.	2.2	10
358	A first combined electrochemical and modelling strategy on composite carbonate/oxide electrolytes for hybrid fuel cells. International Journal of Hydrogen Energy, 2016, 41, 18778-18787.	3.8	10
359	Development of Simple QSPR Models for the Prediction of the Heat of Decomposition of Organic Peroxides. Molecular Informatics, 2017, 36, 1700024.	1.4	10
360	Nonempirical (doubleâ€hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation. International Journal of Quantum Chemistry, 2020, 120, e26193.	1.0	10

#	Article	IF	CITATIONS
361	Beyond Chemical Accuracy for Alkane Thermochemistry: The DH <i>thermo</i> Approach. Journal of Organic Chemistry, 2021, 86, 5538-5545.	1.7	10
362	Electronic spectrum of 2â€pyridone ⁺ : Ab initio and timeâ€dependent density functional calculations. International Journal of Quantum Chemistry, 2010, 110, 498-504.	1.0	9
363	Hybrid Fuel Cells with Carbonate/Oxide Composite Electrolytes: An Electrochemical and Theoretical Insight. ECS Transactions, 2015, 68, 2597-2609.	0.3	9
364	H ₂ Dissociation and Water Evolution on Silver-Decorated CeO ₂ (111): A Hybrid Density Functional Theory Investigation. Journal of Physical Chemistry C, 2019, 123, 25668-25679.	1.5	9
365	Subterahertz Momentum Drag and Violation of Matthiessen's Rule in an Ultraclean Ferromagnetic <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>SrRuO</mml:mi></mml:mrow><ml:mrow><r Metallic Thin Film. Physical Review Letters. 2020. 125. 217401.</r </ml:mrow></mml:msub></mml:mrow></mml:math>	n 219 nmil:mn>3	
366	Understanding the properties of dithienylethenes functionalized for supramolecular self-assembly: a molecular modeling study. Physical Chemistry Chemical Physics, 2020, 22, 6942-6952.	1.3	9
367	Double Hybrids and Noncovalent Interactions: How Far Can We Go?. Journal of Physical Chemistry A, 2022, 126, 2590-2599.	1.1	9
368	Modelling the UV/visible spectrum of tetrakis(phenylethynyl)benzene. Computational and Theoretical Chemistry, 2008, 863, 123-127.	1.5	8
369	How the choice of a computational model could rule the chemical interpretation: The Ni(II) catalyzed ethylene dimerization as a case study. Journal of Computational Chemistry, 2010, 31, 1053-1062.	1.5	8
370	Optimized GGA Functional for Proton Transfer Reactions. Journal of Physical Chemistry A, 2009, 113, 14415-14419.	1.1	8
371	Response to "Comment on â€~Doubly hybrid density functional xDH-PBE0 from a parameter-free global hybrid model PBE0â€â€™ [J. Chem. Phys. 143, 187101 (2015)]. Journal of Chemical Physics, 2015, 143, 187102.	1.2	8
372	Effects of Anthryl Groups on the Charge Transport and Photovoltaic Properties of Small Triarylamineâ€Based Donorâ€Acceptor Molecules: A Joint Experimental and Theoretical Study. ChemistrySelect, 2017, 2, 6296-6303.	0.7	8
373	A combined Monte Carlo/ <scp>DFT</scp> approach to simulate <scp>UV</scp> â€vis spectra of molecules and aggregates: Merocyanine dyes as a case study. Journal of Computational Chemistry, 2021, 42, 1054-1063.	1.5	8
374	Chasing unphysical TD-DFT excited states in transition metal complexes with a simple diagnostic tool. Journal of Chemical Physics, 2021, 154, 204102.	1.2	8
375	Chemistry of ethanediyl S,S-acetals 6- An example of vicarious nucleophilic substitution of hydrogen in 1,4-benzodithians. Tetrahedron, 1993, 49, 11383-11388.	1.0	7
376	Proton transfer in the ground and excited electronic states of [2,2′-bipyridyl]-3,3′-diol. A semiempirical study. Journal of the Chemical Society Perkin Transactions II, 1995, , 1141-1147.	0.9	7
377	Static and dynamic descriptions of bond breaking/formation: A complementary view?. Journal of Chemical Physics, 2005, 123, 211103.	1.2	7
378	Static and dynamic approaches for the calculation of NMR parameters: Permanganate ion as a case study. Computational and Theoretical Chemistry, 2006, 762, 133-137.	1.5	7

#	Article	IF	CITATIONS
379	A comparative post-Hartree–Fock and density functional theory study of monochalcogenide diatomic molecules. Computational and Theoretical Chemistry, 2008, 863, 79-83.	1.5	7
380	Toward tailorable surfaces: A combined theoretical and experimental study of lanthanum niobate layered perovskites. Journal of Chemical Physics, 2014, 141, 024704.	1.2	7
381	Theoretical and Experimental Study on the Inhibition of Diethyl Ether Oxidation. Energy & Fuels, 2014, 28, 2821-2829.	2.5	7
382	Dithieno[3,2-b:2′,3′-d]pyran-containing organic D–π–A sensitizers for dye-sensitized solar cells. RSC Advances, 2014, 4, 62472-62475.	1.7	7
383	Defect Formation and Diffusion on the (001) Surface of LiKCO3 for Fuel Cell Applications: Insight from Hybrid DFT. Journal of Physical Chemistry C, 2016, 120, 12941-12951.	1.5	7
384	Investigation of ferromagnetic heterogeneities in La _{0.7} Sr _{0.3} MnO ₃ thin films. Journal Physics D: Applied Physics, 2017, 50, 045001.	1.3	7
385	Density Functional Determination of the Energetics of the Formation of <i>trans</i> tilbene Catalyzed by Sulfenate Anions. ChemCatChem, 2017, 9, 278-281.	1.8	7
386	Computation of covalent and noncovalent structural parameters at low computational cost: Efficiency of the <scp>DHâ€&VPD</scp> method. International Journal of Quantum Chemistry, 2020, 120, e26233.	1.0	7
387	Tackling an accurate description of molecular reactivity with double-hybrid density functionals. Journal of Chemical Physics, 2022, 156, 161101.	1.2	7
388	Electrochemical synthesis of tetrakis[N-methylbenzothiazole-2(3H)-selone]selenium(2+) tetrafluroborate: an uncommon dication containing the mixed-valence Se5 framework. Chemical Communications, 1996, , 873.	2.2	6
389	General computational strategy to study polymerization reactions at aluminum-based catalysts. International Journal of Quantum Chemistry, 2003, 91, 474-482.	1.0	6
390	La0.7Sr0.3MnO3 thin films on SrTiO3 and CaTiO3 buffered Si substrates: structural, static, and dynamic magnetic properties. Journal of Nanoparticle Research, 2011, 13, 5669-5675.	0.8	6
391	Modeling composite electrolytes for low-temperature solid oxide fuel cell application: structural, vibrational and electronic features of carbonate–oxide interfaces. Journal of Materials Chemistry A, 2016, 4, 17473-17482.	5.2	6
392	Toward the Mechanistic Understanding of the Additives' Role on Ammonium Nitrate Decomposition: Calcium Carbonate and Calcium Sulfate as Case Studies. ACS Omega, 2020, 5, 5034-5040.	1.6	6
393	Mechanochromic LLDPE Films Doped with NIR Reflective Paliogen Black. Macromolecular Rapid Communications, 2021, 42, e2000426.	2.0	6
394	ESR features of the bicyclobutyl radical revisited. A counterintuitive ordering of short- and long-range isotropic hyperfine coupling constants. Chemical Physics Letters, 1995, 246, 53-58.	1.2	5
395	Reply to the Comment "A theoretical study of bonding in lanthanide trihalides by density functional methods―by M. Hargittai. Journal of Physical Chemistry A, 1999, 103, 7554-7554. 	1.1	5
396	Intrinsic Electric Transport in CMR Thin-Films. Journal of Superconductivity and Novel Magnetism, 2005, 18, 719-722.	0.5	5

#	Article	IF	CITATIONS
397	Theoretical Study of Sticking Processes on Molecular Models of Silica Surfaces. Theoretical Chemistry Accounts, 2006, 115, 379-384.	0.5	5
398	New Correlation Functionals In DFT: Theory And Tests. , 2009, , .		5
399	New range-separated hybrids based on the TCA density functional. Chemical Physics Letters, 2012, 519-520, 145-149.	1.2	5
400	Atomic Structure and Properties of Charged Domain Walls in BiFeO3 Films. Microscopy and Microanalysis, 2013, 19, 1654-1655.	0.2	5
401	In silico assessment of the HPLC–UV response coefficients. Computational and Theoretical Chemistry, 2014, 1040-1041, 1-5.	1.1	5
402	Investigating the role of the π-bridge characteristics in donor–π-spacer–acceptor type dyes for solar cell application: a theoretical study. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	5
403	In Silico Investigation of the Aggregation aused Quenching: the "Tolaneâ€Based Molecule―Case. ChemPhotoChem, 2019, 3, 794-803.	1.5	5
404	Aggregationâ€Induced Emission: A Challenge for Computational Chemistry Taking TPAâ€BMO as an Example**. ChemPhysChem, 2021, 22, 1802-1816.	1.0	5
405	Free Energy Profiles of Proton Transfer Reactions: Density Functional Benchmark from Biased Ab Initio Dynamics. Journal of Chemical Theory and Computation, 2022, , .	2.3	5
406	Defect interaction and local structural distortions in Mg-doped LaGaO3: A combined experimental and theoretical study. Journal of Chemical Physics, 2017, 147, 144702.	1.2	4
407	Communication: Accurate description of interaction energies and three-body effects in weakly bound molecular complexes by PBE-QIDH models. Journal of Chemical Physics, 2018, 149, 041101.	1.2	4
408	Photophysical properties of fluorescent imaging biological probes of nucleic acids: SAC I and TDâ€ĐFT Study. Journal of Computational Chemistry, 2019, 40, 127-134.	1.5	4
409	Pairing double hybrid functionals with a tailored basis set for an accurate thermochemistry of hydrocarbons. RSC Advances, 2021, 11, 26073-26082.	1.7	4
410	Structural and Dynamical Features of Hydrogen Bonds from Conventional and Hybrid Density Functional Methods. Recent Advances in Computational, 1997, , 115-164.	0.8	3
411	Adsorption of successive layers of H2 molecules on a model copper surface: performances of second- to fifth-rung exchange-correlation functionals. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	3
412	Simulations of UV–visible spectra for analytical applications: phenothiazines as a case study. Molecular Simulation, 2014, 40, 169-175.	0.9	3
413	Design, synthesis, biological evaluation, <scp>NMR</scp> and <scp>DFT</scp> studies of structurally simplified trimethoxy benzamides as selective Pâ€glycoprotein inhibitors: the role of molecular flatness. Chemical Biology and Drug Design, 2016, 88, 820-831.	1.5	3
414	Gradient-regulated connection-based correction for the PBE exchange: the PBEtrans model. Molecular Physics, 2016, 114, 1059-1065.	0.8	3

#	Article	IF	CITATIONS
415	Theoretical insights into inorganic–organic intercalation products of the layered perovskite HLaNb ₂ O ₇ : perspectives for hybrid proton conductors. Physical Chemistry Chemical Physics, 2019, 21, 16647-16657.	1.3	3
416	On the Stability Issues of TiO ₂ -Based Composites in View of Fuel Cell Application: A Combined Experimental and Theoretical Investigation. Journal of Physical Chemistry C, 2019, 123, 12573-12582.	1.5	3
417	Modeling Photonastic Materials: A First Computational Study. Journal of Chemical Theory and Computation, 2020, 16, 7017-7032.	2.3	3
418	Electronic coupling in the reduced state lies at the origin of color changes of ommochromes. Dyes and Pigments, 2021, 185, 108661.	2.0	3
419	Theoretical study of direct and water-assisted isomerization of formaldehyde radical cation. A comparison between density functional and post-Hartree—Fock approaches (Chem. Phys. Letters 224) Tj ETQq1	1.0 .7843	1⋬ rgBT /O
420	Interaction of osmium(ii) redox probes with DNA: insights from theory. Physical Chemistry Chemical Physics, 2016, 18, 30029-30039.	1.3	2
421	Determining the role of the underlying orbitalâ€dependence of PBE0â€DH and PBEâ€QIDH doubleâ€hybrid density functionals. Journal of Computational Chemistry, 2017, 38, 1509-1514.	1.5	2
422	Dioxygenation of metal(II) ysteinato complexes in CDO biomimetic models: Can ruthenium and osmium reach iron performances?. International Journal of Quantum Chemistry, 2018, 118, e25525.	1.0	2
423	Experimental and theoretical assignments of stereoregular poly(N-pentenylcarbazole) FT-IR spectra. Vibrational Spectroscopy, 2019, 101, 64-70.	1.2	2
424	Intrinsic and Environmental Effects on Protomeric Equilibria in the Ground and Excited Electronic States of Biological Systems. Topics in Molecular Organization and Engineering, 1994, , 1-18.	0.1	2
425	Chapter 14 Quantum chemical topology and reactivity: A comparative static and dynamic study on a SN2 reaction. Theoretical and Computational Chemistry, 2007, , 287-300.	0.2	1
426	A theoretical investigation on the interaction of a new gene vector with DNA. Theoretical Chemistry Accounts, 2008, 120, 507-513.	0.5	1
427	In-Situ Cross-Sectional Switching of Multiferroic BiFeO ₃ Thin Films. Microscopy and Microanalysis, 2011, 17, 1360-1361.	0.2	1
428	Experimental And Theoretical Approach Of Surface Reactivity Of CeO2 For SOFC Application. ECS Transactions, 2011, 35, 1015-1019.	0.3	1
429	Towards a Greater Accuracy in DFT Calculations: From GGA to Hybrid Functionals. , 2012, , 3-15.		1
430	Ruthenium(II) complexes with new large-surface ligands based on electron-accepting expanded pyridiniums: insights from density functional theory. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	1
431	Probing the performances of HISS functionals for the description of excited states of molecular systems. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	1
432	Theoretical insights on acceptor–donor dyads for organic photovoltaics. Physical Chemistry Chemical Physics, 2020, 22, 27413-27424.	1.3	1

#	Article	IF	CITATIONS
433	A global analysis of excited states: the global transition contribution grids. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	1
434	On the nature of the cobalt-nitrogen bond in the CON+2 complex. A theoretical study. Chemical Physics Letters, 1996, 254, 314-320.	1.2	0
435	ZnO Epitaxy on (111) Silicon Using Intervening Bixbyite Oxide Buffer Layers. Microscopy and Microanalysis, 2010, 16, 1402-1403.	0.2	0
436	2-D Mapping of Ferroelectric Domains by Transmission Electron Microscopy. Microscopy and Microanalysis, 2011, 17, 1356-1357.	0.2	0
437	Atomic Resolution Studies of Self-Stabilizing Metal-Perovskite Catalysts. Microscopy and Microanalysis, 2011, 17, 1594-1595.	0.2	0
438	The Contribution of Theoretical Chemistry to the Drug Design in Photodynamic Therapy. , 2011, , 121-134.		0
439	Interface Effects on Static and Dynamic Properties of Multiferroic BiFeO3. Microscopy and Microanalysis, 2012, 18, 320-321.	0.2	0
440	New Insight into Atomic Scale Phenomena in Novel Perovskite-Based Catalysts. Microscopy and Microanalysis, 2012, 18, 1296-1297.	0.2	0
441	Preface to the special collection in honour of Vincenzo Barone. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	0
442	On the starting blocks. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	0
443	Mechanical and Electrical Control of Charged Domain Walls in Ferroelectric Materials. Microscopy and Microanalysis, 2014, 20, 1546-1547.	0.2	0
444	Does the gradientâ€regulated connection improve the description of correlated metal bond properties?. International Journal of Quantum Chemistry, 2019, 119, e25831.	1.0	0
445	Modeling the Electron Transfer Chain in an Artificial Photosynthetic Machine. Journal of Physical Chemistry Letters, 2020, 11, 9738-9744.	2.1	0
446	Role of Computational Variables on the Performances of COSMO-SAC Model: A Combined Theoretical and Experimental Investigation. Industrial & amp; Engineering Chemistry Research, 2021, 60, 2314-2325.	1.8	0
447	On the Interplay between Molecular Packing and Optical Response in Thin Films for Organic Photovoltaics. Journal of Physical Chemistry C, 2021, 125, 16304-16315.	1.5	0
448	Adsorption of successive layers of H2 molecules on a model copper surface: performances of second- to fifth-rung exchange-correlation functionals. Highlights in Theoretical Chemistry, 2013, , 281-289.	0.0	0
449	Generalized gradient exchange functionals based on the gradient-regulated connection: a new member of the TCA family. Highlights in Theoretical Chemistry, 2013, , 237-243.	0.0	0