Johannes Radinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3658778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patterns and predictors of fish dispersal in rivers. Fish and Fisheries, 2014, 15, 456-473.	2.7	235
2	Effective monitoring of freshwater fish. Fish and Fisheries, 2019, 20, 729-747.	2.7	98
3	The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers. Global Change Biology, 2017, 23, 4970-4986.	4.2	79
4	Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. Science of the Total Environment, 2015, 533, 542-556.	3.9	77
5	Synergistic and antagonistic interactions of future land use and climate change on river fish assemblages. Global Change Biology, 2016, 22, 1505-1522.	4.2	66
6	Susceptibility of European freshwater fish to climate change: Species profiling based on lifeâ€history and environmental characteristics. Global Change Biology, 2019, 25, 448-458.	4.2	55
7	The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Global Change Biology, 2020, 26, 5509-5523.	4.2	50
8	Disentangling the effects of habitat suitability, dispersal, and fragmentation on the distribution of river fishes. Ecological Applications, 2015, 25, 914-927.	1.8	49
9	Key factors explaining critical swimming speed in freshwater fish: a review and statistical analysis for Iberian species. Scientific Reports, 2020, 10, 18947.	1.6	40
10	Improved river continuity facilitates fishes' abilities to track future environmental changes. Journal of Environmental Management, 2018, 208, 169-179.	3.8	29
11	Environmental filtering governs the spatial distribution of alien fishes in a large, humanâ€impacted Mediterranean river. Diversity and Distributions, 2019, 25, 701-714.	1.9	28
12	Reliability analysis of fish traits reveals discrepancies among databases. Freshwater Biology, 2020, 65, 863-877.	1.2	25
13	The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using MaxEnt. Ecological Modelling, 2020, 418, 108937.	1.2	25
14	FIDIMO — A free and open source GIS based dispersal model for riverine fish. Ecological Informatics, 2014, 24, 238-247.	2.3	21
15	Disentangling multiple pressures on fish assemblages in large rivers. Science of the Total Environment, 2018, 627, 1093-1105.	3.9	21
16	Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River. PLoS ONE, 2015, 10, e0142813.	1.1	21
17	Environmental and spatial correlates of hydrologic alteration in a large Mediterranean river catchment. Science of the Total Environment, 2018, 639, 1138-1147.	3.9	20
18	A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota. PLoS ONE, 2015, 10, e0130228.	1.1	19

JOHANNES RADINGER

#	Article	IF	CITATIONS
19	The role of connectivity in the interplay between climate change and the spread of alien fish in a large Mediterranean river. Global Change Biology, 2020, 26, 6383-6398.	4.2	19
20	Differences among Expert Judgments of Fish Habitat Suitability and Implications for River Management. River Research and Applications, 2017, 33, 538-547.	0.7	15
21	The European Fish Hazard Index – An assessment tool for screening hazard of hydropower plants for fish. Sustainable Energy Technologies and Assessments, 2021, 43, 100903.	1.7	9
22	Managing River Fish Biodiversity Generates Substantial Economic Benefits in Four European Countries. Environmental Management, 2019, 63, 759-776.	1.2	8
23	Evident but contextâ€dependent mortality of fish passing hydroelectric turbines. Conservation Biology, 2022, 36, .	2.4	7
24	Phylogenetic signal and evolutionary relationships among traits of inland fishes along elevational and longitudinal gradients. Freshwater Biology, 2022, 67, 912-925.	1.2	6
25	Assessing how uncertainty and stochasticity affect the dispersal of fish in river networks. Ecological Modelling, 2017, 359, 220-228.	1.2	5

26 Flash photography does not induce stress in the Ram cichlid <i>Mikrogeophagus ramirezi</i> (Myers) Tj ETQq0 0 0.0gBT /Overlock 10 Tf

27	Application of lowâ€frequency sonophoresis and reduction of antibiotics in the aquatic systems. Journal of Fish Diseases, 2017, 40, 1635-1643.	0.9	3
28	Comparative assessment of hydropower risks for fishes using the novel European fish hazard Index. Sustainable Energy Technologies and Assessments, 2022, 51, 101906.	1.7	0