
Florence Delie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3658596/publications.pdf Version: 2024-02-01

FLORENCE DELLE

#	Article	IF	CITATIONS
1	Pharmacological prevention of intimal hyperplasia: A state-of-the-art review. , 2022, 235, 108157.		19
2	Bioadhesive Hyaluronic Acid/Dopamine Hydrogels for Vascular Applications Prepared by Initiator-Free Crosslinking. International Journal of Molecular Sciences, 2022, 23, 5706.	1.8	6
3	Antiproliferative activity of a new xanthone derivative from leaves of <i>Garcinia nobilis</i> Engl Natural Product Research, 2021, 35, 5604-5611.	1.0	4
4	Bioguided identification of pentacyclic triterpenoids as anti-inflammatory bioactive constituents of Ocimum gratissimum extract. Journal of Ethnopharmacology, 2021, 268, 113637.	2.0	11
5	Antitumor Effect of 5-Fluorouracil-Loaded Liposomes Containing n-3 Polyunsaturated Fatty Acids in Two Different Colorectal Cancer Cell Lines. AAPS PharmSciTech, 2021, 22, 36.	1.5	6
6	Cytotoxicity of a new tirucallane derivative isolated from Stereospermum acuminatissimum K. Schum stem bark. Natural Product Research, 2021, 35, 1-6.	1.0	10
7	Enhancing ovarian cancer conventional chemotherapy through the combination with cannabidiol loaded microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 246-258.	2.0	20
8	PLGA Nanoparticles for the Intraperitoneal Administration of CBD in the Treatment of Ovarian Cancer: In Vitro and In Ovo Assessment. Pharmaceutics, 2020, 12, 439.	2.0	53
9	In Michael Moeller's spirit. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 1.	2.0	Ο
10	Development of resiquimod-loaded modified PLA-based nanoparticles for cancer immunotherapy: A kinetic study. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 253-261.	2.0	28
11	Perivascular Administration of Atorvastatin Loaded in Microparticles and Hyaluronic Acid Gel to Prevent Intimal Hyperplasia in Venous Graft. European Journal of Vascular and Endovascular Surgery, 2019, 58, e99-e100.	0.8	0
12	Malignant ascites: a source of therapeutic protein against ovarian cancer?. Oncotarget, 2019, 10, 5894-5905.	0.8	3
13	Design and characterization of a perivascular PLGA coated PET mesh sustaining the release of atorvastatin for the prevention of intimal hyperplasia. International Journal of Pharmaceutics, 2018, 537, 40-47.	2.6	9
14	Polymer-based nanoparticles loaded with a TLR7 ligand to target the lymph node for immunostimulation. International Journal of Pharmaceutics, 2018, 535, 444-451.	2.6	48
15	Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles. International Journal of Pharmaceutics, 2018, 548, 771-777.	2.6	21
16	Evaluating intimal hyperplasia under clinical conditions. Interactive Cardiovascular and Thoracic Surgery, 2018, 27, 427-436.	0.5	12
17	Imaging the porous structure in the core of degrading PLGA microparticles: The effect of molecular weight. Journal of Controlled Release, 2018, 286, 231-239.	4.8	44
18	Perivascular medical devices and drug delivery systems: Making the right choices. Biomaterials, 2017, 128, 56-68.	5.7	26

FLORENCE DELIE

#	Article	IF	CITATIONS
19	Circulating GRP78 antibodies from ovarian cancer patients: a promising tool for cancer cell targeting drug delivery system?. Oncotarget, 2017, 8, 107176-107187.	0.8	16
20	Perivascular sustained release of atorvastatin from a hydrogel-microparticle delivery system decreases intimal hyperplasia. Journal of Controlled Release, 2016, 232, 93-102.	4.8	29
21	In ovo method for evaluating the effect of nutritional therapies on tumor development, growth and vascularization. Clinical Nutrition Experimental, 2015, 2, 9-17.	2.0	14
22	Role of PAR-4 in ovarian cancer. Oncotarget, 2015, 6, 22641-22652.	0.8	17
23	Nanoparticle Formulation Improves the Anticonvulsant Effect of Clonazepam on the Pentylenetetrazole-Induced Seizures: Behavior and Electroencephalogram. Journal of Pharmaceutical Sciences, 2014, 103, 2509-2519.	1.6	30
24	Acellular fraction of ovarian cancer ascites induce apoptosis by activating JNK and inducing BRCA1, Fas and FasL expression in ovarian cancer cells. Oncoscience, 2014, 1, 262-271.	0.9	16
25	New high throughput screening method for drug release measurements. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 151-157.	2.0	5
26	GRP78-targeted nanotherapy against castrate-resistant prostate cancer cells expressing membrane GRP78. Targeted Oncology, 2013, 8, 225-230.	1.7	23
27	Atorvastatin-Loaded Hydrogel Affects the Smooth Muscle Cells of Human Veins. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 574-581.	1.3	26
28	Anti-KDEL-coated nanoparticles: A promising tumor targeting approach for ovarian cancer?. Biochimie, 2012, 94, 2391-2397.	1.3	9
29	GRP78 Protein Expression in Ovarian Cancer Patients and Perspectives for a Drug-Targeting Approach. Journal of Oncology, 2012, 2012, 1-5.	0.6	43
30	Novel self-associative and multiphasic nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives. Carbohydrate Polymers, 2012, 87, 444-451.	5.1	40
31	In vitro blood brain barrier models as a screening tool for colloidal drug delivery systems and other nanosystems. International Journal of Biomedical Nanoscience and Nanotechnology, 2010, 1, 133.	0.1	5
32	Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice. Journal of Controlled Release, 2010, 144, 324-331.	4.8	93
33	Interaction of biodegradable nanoparticles with intestinal cells: The effect of surface hydrophilicity. International Journal of Pharmaceutics, 2010, 390, 45-52.	2.6	33
34	Localization and quantification of biodegradable particles in an intestinal cell model: The influence of particle size. European Journal of Pharmaceutical Sciences, 2009, 36, 465-473.	1.9	106
35	Nanomedicines for active targeting: Physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. European Journal of Pharmaceutical Sciences, 2009, 38, 230-237.	1.9	69
36	Benefits of nanoencapsulation for the hypercin-mediated photodetection of ovarian micrometastases. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 207-213.	2.0	29

FLORENCE DELIE

#	Article	IF	CITATIONS
37	Screening of nanoparticulate delivery systems for the photodetection of cancer in a simple and cost-effective model. Nanomedicine, 2009, 4, 135-143.	1.7	11
38	Quenching-induced deactivation of photosensitizer by nanoencapsulation to improve phototherapy of cancer. Journal of Drug Targeting, 2009, 17, 619-626.	2.1	13
39	Toward the understanding of the photodynamic activity of m-THPP encapsulated in PLGA nanoparticles: correlation between nanoparticle properties and in vivo activity. Journal of Drug Targeting, 2009, 17, 599-609.	2.1	19
40	Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 1-9.	2.0	884
41	In vivo photodynamic activity of photosensitizer-loaded nanoparticles: Formulation properties, administration parameters and biological issues involved in PDT outcome. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 43-53.	2.0	52
42	Differential tumor cell targeting of anti-HER2 (Herceptin®) and anti-CD20 (Mabthera®) coupled nanoparticles. International Journal of Pharmaceutics, 2007, 331, 190-196.	2.6	110
43	Fluorescent biodegradable PLGA particles with narrow size distributions: Preparation by means of selective centrifugation. International Journal of Pharmaceutics, 2007, 342, 222-230.	2.6	58
44	The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systemsã^†. Advanced Drug Delivery Reviews, 2007, 59, 1162-1176.	6.6	258
45	Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. International Journal of Pharmaceutics, 2006, 326, 174-181.	2.6	166
46	Polymeric Nanoparticles for Drug Delivery to the Posterior Segment of the Eye. Chimia, 2005, 59, 344-347.	0.3	12
47	Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. International Journal of Pharmaceutics, 2004, 286, 131-145.	2.6	142
48	A Human Colonic Cell Line Sharing Similarities With Enterocytes as a Model to Examine Oral Absorption: Advantages and Limitations of the Caco-2 Model. Critical Reviews in Therapeutic Drug Carrier Systems, 1997, 14, 66.	1.2	345
49	Study of the influence of several stabilizing agents on the entrapment and in vitro release of pBC 264 from poly(lactide-co-glycolide) microspheres prepared by a W/O/W solvent evaporation method. Pharmaceutical Research, 1996, 13, 1127-1129.	1.7	38
50	Characterization of V3 BRU peptide-loaded small PLGA microspheres prepared by a (w1/o)w2 emulsion solvent evaporation method. International Journal of Pharmaceutics, 1994, 111, 137-145.	2.6	56