
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3658545/publications.pdf Version: 2024-02-01

Ι ΙΟΝΑΤΗΛΝ ΡΑΓ

#	Article	IF	CITATIONS
1	The in-situ exploration of Jupiter's radiation belts. Experimental Astronomy, 2022, 54, 745-789.	1.6	11
2	Resolving Magnetopause Shadowing Using Multimission Measurements of Phase Space Density. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	17
3	Statistical Comparison of Electron Loss and Enhancement in the Outer Radiation Belt During Storms. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
4	The Correspondence Between Sudden Commencements and Geomagnetically Induced Currents: Insights From New Zealand. Space Weather, 2022, 20, .	1.3	3
5	On the Considerations of Using Near Real Time Data for Space Weather Hazard Forecasting. Space Weather, 2022, 20, .	1.3	5
6	Earth Wind as a Possible Exogenous Source of Lunar Surface Hydration. Astrophysical Journal Letters, 2021, 907, L32.	3.0	18
7	Challenging the Use of Ring Current Indices During Geomagnetic Storms. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028423.	0.8	8
8	Determining the Temporal and Spatial Coherence of Plasmaspheric Hiss Waves in the Magnetosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028635.	0.8	7
9	Vortex Generation and Auroral Response to a Solar Wind Dynamic Pressure Increase: Event Analyses. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028753.	0.8	4
10	ULF Wave Driven Radial Diffusion During Geomagnetic Storms: A Statistical Analysis of Van Allen Probes Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029024.	0.8	30
11	Modeling the Geomagnetic Response to the September 2017 Space Weather Event Over Fennoscandia Using the Space Weather Modeling Framework: Studying the Impacts of Spatial Resolution. Space Weather, 2021, 19, e2020SW002683.	1.3	13
12	Transpolar Arcs During a Prolonged Radial Interplanetary Magnetic Field Interval. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029197.	0.8	4
13	Constraining Suprathermal Electron Evolution in a Parker Spiral Field With Cassini Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028669.	0.8	0
14	Revealing the source of Jupiter's x-ray auroral flares. Science Advances, 2021, 7, .	4.7	25
15	The Impact of Sudden Commencements on Ground Magnetic Field Variability: Immediate and Delayed Consequences. Space Weather, 2021, 19, e2021SW002764.	1.3	11
16	The Roles of the Magnetopause and Plasmapause in Stormâ€Time ULF Wave Power Enhancements. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029337.	0.8	5
17	Evaluating Auroral Forecasts Against Satellite Observations. Space Weather, 2021, 19, e2020SW002688.	1.3	3
18	Interplanetary Shockâ€Induced Magnetopause Motion: Comparison Between Theory and Global Magnetohydrodynamic Simulations. Geophysical Research Letters, 2021, 48, e2021GL092554.	1.5	10

#	Article	IF	CITATIONS
19	Forecasting the Probability of Large Rates of Change of the Geomagnetic Field in the UK: Timescales, Horizons, and Thresholds. Space Weather, 2021, 19, e2021SW002788.	1.3	10
20	Cross―Coherence of the Outer Radiation Belt During Storms and the Role of the Plasmapause. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029308.	0.8	5
21	The Implications of Temporal Variability in Waveâ€Particle Interactions in Earth's Radiation Belts. Geophysical Research Letters, 2021, 48, e2020GL089962.	1.5	9
22	Determining the Global Scale Size of Chorus Waves in the Magnetosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029569.	0.8	6
23	Probing Current Sheet Instabilities from Flare Ribbon Dynamics. Astrophysical Journal, 2021, 922, 117.	1.6	5
24	Probabilistic Forecasts of Storm Sudden Commencements From Interplanetary Shocks Using Machine Learning. Space Weather, 2020, 18, e2020SW002603.	1.3	18
25	Forecasting GOES 15 >2 MeV Electron Fluxes From Solar Wind Data and Geomagnetic Indices. Space Weather, 2020, 18, e2019SW002416.	1.3	12
26	Jupiter's Xâ€ray Emission During the 2007 Solar Minimum. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027219.	0.8	17
27	Inner Magnetospheric ULF Waves: The Occurrence and Distribution of Broadband and Discrete Wave Activity. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027887.	0.8	10
28	Diagnosing the Timeâ€Dependent Nature of Magnetosphereâ€ionosphere Coupling via ULF Waves at Substorm Onset. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028573.	0.8	4
29	Comparisons Between Jupiter's Xâ€ray, UV and Radio Emissions and Inâ€Situ Solar Wind Measurements During 2007. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027222.	0.8	24
30	Unusual Location of the Geotail Magnetopause Near Lunar Orbit: A Case Study. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027401.	0.8	8
31	Energy Budget of High-speed Plasma Flows in the Terrestrial Magnetotail. Astrophysical Journal, 2020, 894, 16.	1.6	1
32	Do Statistical Models Capture the Dynamics of the Magnetopause During Sudden Magnetospheric Compressions?. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027289.	0.8	26
33	A Framework for Understanding and Quantifying the Loss and Acceleration of Relativistic Electrons in the Outer Radiation Belt During Geomagnetic Storms. Space Weather, 2020, 18, e2020SW002477.	1.3	11
34	The Changing Eigenfrequency Continuum During Geomagnetic Storms: Implications for Plasma Mass Dynamics and ULF Wave Coupling. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027648.	0.8	9
35	Ion‣cale Flux Rope Observed inside a Hot Flow Anomaly. Geophysical Research Letters, 2020, 47, e2019GL085933.	1.5	13
36	Examining Local Time Variations in the Gains and Losses of Open Magnetic Flux During Substorms. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027369.	0.8	6

#	Article	IF	CITATIONS
37	On the Magnetospheric ULF Wave Counterpart of Substorm Onset. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027573.	0.8	8
38	Evaluating the Performance of a Plasma Analyzer for a Space Weather Monitor Mission Concept. Space Weather, 2020, 18, e2020SW002559.	1.3	9
39	Statistics of solar wind electron breakpoint energies using machine learning techniques. Astronomy and Astrophysics, 2020, 639, A46.	2.1	8
40	Using Dimensionality Reduction and Clustering Techniques to Classify Space Plasma Regimes. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	7
41	Electron Energization and Energy Dissipation in Microscale Electromagnetic Environments. Astrophysical Journal Letters, 2020, 899, L31.	3.0	10
42	How Do Ultra‣ow Frequency Waves Access the Inner Magnetosphere During Geomagnetic Storms?. Geophysical Research Letters, 2019, 46, 10699-10709.	1.5	20
43	Substormâ€Ring Current Coupling: A Comparison of Isolated and Compound Substorms. Journal of Geophysical Research: Space Physics, 2019, 124, 6776-6791.	0.8	8
44	On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 2019, 46, 11632-11641.	1.5	32
45	Electron Mirror-mode Structure: Magnetospheric Multiscale Observations. Astrophysical Journal Letters, 2019, 881, L31.	3.0	27
46	From heliophysics to space weather forecasts. Astronomy and Geophysics, 2019, 60, 5.26-5.30.	0.1	0
47	Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss. Journal of Geophysical Research: Space Physics, 2019, 124, 8488-8506.	0.8	27
48	Electron Dispersion and Parallel Electron Beam Observed Near the Separatrix. Journal of Geophysical Research: Space Physics, 2019, 124, 7494-7504.	0.8	5
49	The Influence of Substorms on Extreme Rates of Change of the Surface Horizontal Magnetic Field in the United Kingdom. Space Weather, 2019, 17, 827-844.	1.3	35
50	How Well Can We Estimate Pedersen Conductance From the THEMIS Whiteâ€Light Allâ€Sky Cameras?. Journal of Geophysical Research: Space Physics, 2019, 124, 2920-2934.	0.8	11
51	Capturing Uncertainty in Magnetospheric Ultralow Frequency Wave Models. Space Weather, 2019, 17, 599-618.	1.3	9
52	On the Relative Strength of Electric and Magnetic ULF Wave Radial Diffusion During the March 2015 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2019, 124, 2569-2587.	0.8	23
53	The Influence of Sudden Commencements on the Rate of Change of the Surface Horizontal Magnetic Field in the United Kingdom. Space Weather, 2019, 17, 1605-1617.	1.3	19
54	Pc4â€5 Poloidal ULF Wave Observed in the Dawnside Plasmaspheric Plume. Journal of Geophysical Research: Space Physics, 2019, 124, 9986-9998.	0.8	11

#	Article	IF	CITATIONS
55	Waves in Kineticâ€Scale Magnetic Dips: MMS Observations in the Magnetosheath. Geophysical Research Letters, 2019, 46, 523-533.	1.5	49
56	ULF Wave Activity in the Magnetosphere: Resolving Solar Wind Interdependencies to Identify Driving Mechanisms. Journal of Geophysical Research: Space Physics, 2018, 123, 2745-2771.	0.8	34
57	The Global Statistical Response of the Outer Radiation Belt During Geomagnetic Storms. Geophysical Research Letters, 2018, 45, 3783-3792.	1.5	66
58	Control of ULF Wave Accessibility to the Inner Magnetosphere by the Convection of Plasma Density. Journal of Geophysical Research: Space Physics, 2018, 123, 1086-1099.	0.8	47
59	Spatial Distribution and Semiannual Variation of Coldâ€Dense Plasma Sheet. Journal of Geophysical Research: Space Physics, 2018, 123, 464-472.	0.8	7
60	Reply to 'The dynamics of Van Allen belts revisited'. Nature Physics, 2018, 14, 103-104.	6.5	14
61	Variations of Highâ€Latitude Geomagnetic Pulsation Frequencies: A Comparison of Timeâ€ofâ€Flight Estimates and IMAGE Magnetometer Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 567-586.	0.8	14
62	Diagnosing the Role of Alfvén Waves in Magnetosphereâ€lonosphere Coupling: Swarm Observations of Large Amplitude Nonstationary Magnetic Perturbations During an Interval of Northward IMF. Journal of Geophysical Research: Space Physics, 2018, 123, 326-340.	0.8	39
63	Seasonal and Temporal Variations of Fieldâ€Aligned Currents and Ground Magnetic Deflections During Substorms. Journal of Geophysical Research: Space Physics, 2018, 123, 2696-2713.	0.8	19
64	The Role of Localized Compressional Ultraâ€low Frequency Waves in Energetic Electron Precipitation. Journal of Geophysical Research: Space Physics, 2018, 123, 1900-1914.	0.8	36
65	Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au. Astrophysical Journal, 2018, 855, 40.	1.6	11
66	Tailward Propagation of Magnetic Energy Density Variations With Respect to Substorm Onset Times. Journal of Geophysical Research: Space Physics, 2018, 123, 4741-4754.	0.8	11
67	Statistical Study of the Energetic Proton Environment at Titan's Orbit From the Cassini Spacecraft. Journal of Geophysical Research: Space Physics, 2018, 123, 4820-4834.	0.8	8
68	Statistical study of ULF waves in the magnetotail by THEMIS observations. Annales Geophysicae, 2018, 36, 1335-1346.	0.6	11
69	Ultralow Frequency Waves as an Intermediary for Solar Wind Energy Input Into the Radiation Belts. Journal of Geophysical Research: Space Physics, 2018, 123, 10,090.	0.8	12
70	A diagnosis of the plasma waves responsible for the explosive energy release of substorm onset. Nature Communications, 2018, 9, 4806.	5.8	25
71	Variations of Field Line Eigenfrequencies With Ring Current Intensity. Journal of Geophysical Research: Space Physics, 2018, 123, 9325-9339.	0.8	9
72	Energization of the Ring Current by Substorms. Journal of Geophysical Research: Space Physics, 2018, 123, 8131-8148.	0.8	22

#	Article	IF	CITATIONS
73	Observations of Kelvinâ€Helmholtz Waves in the Earth's Magnetotail Near the Lunar Orbit. Journal of Geophysical Research: Space Physics, 2018, 123, 3836-3847.	0.8	13
74	Dayside Magnetospheric and Ionospheric Responses to a Foreshock Transient on 25 June 2008: 1. FLR Observed by Satellite and Groundâ€Based Magnetometers. Journal of Geophysical Research: Space Physics, 2018, 123, 6335-6346.	0.8	40
75	Determining the Mode, Frequency, and Azimuthal Wave Number of ULF Waves During a HSS and Moderate Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2018, 123, 6457-6477.	0.8	23
76	Rotationally driven magnetic reconnection in Saturn's dayside. Nature Astronomy, 2018, 2, 640-645.	4.2	32
77	Birkeland currents during substorms: Statistical evidence for intensification of Regions 1 and 2 currents after onset and a localized signature of auroral dimming. Journal of Geophysical Research: Space Physics, 2017, 122, 6455-6468.	0.8	21
78	A direct examination of the dynamics of dipolarization fronts using MMS. Journal of Geophysical Research: Space Physics, 2017, 122, 4335-4347.	0.8	44
79	The evolution of solar wind strahl with heliospheric distance. Journal of Geophysical Research: Space Physics, 2017, 122, 3858-3874.	0.8	61
80	The independent pulsations of Jupiter's northern and southern X-ray auroras. Nature Astronomy, 2017, 1, 758-764.	4.2	49
81	An explanation of auroral intensification during the substorm expansion phase. Journal of Geophysical Research: Space Physics, 2017, 122, 8560-8576.	0.8	10
82	The dependence of magnetospheric plasma mass loading on geomagnetic activity using Cluster. Journal of Geophysical Research: Space Physics, 2017, 122, 9371-9395.	0.8	18
83	Two fundamentally different drivers of dipolarizations at Saturn. Journal of Geophysical Research: Space Physics, 2017, 122, 4348-4356.	0.8	22
84	Auroral streamer and its role in driving wave-like pre-onset aurora. Geoscience Letters, 2017, 4, 8.	1.3	10
85	Statistical azimuthal structuring of the substorm onset arc: Implications for the onset mechanism. Geophysical Research Letters, 2017, 44, 2078-2087.	1.5	35
86	Mechanisms of Saturn's Nearâ€Noon Transient Aurora: In Situ Evidence From Cassini Measurements. Geophysical Research Letters, 2017, 44, 11,217.	1.5	10
87	Corotating Magnetic Reconnection Site in Saturn's Magnetosphere. Astrophysical Journal Letters, 2017, 846, L25.	3.0	23
88	Identifying intervals of temporally invariant fieldâ€aligned currents from Swarm: Assessing the validity of singleâ€spacecraft methods. Journal of Geophysical Research: Space Physics, 2017, 122, 3411-3419.	0.8	21
89	The parameterization of waveâ€particle interactions in the Outer Radiation Belt. Journal of Geophysical Research: Space Physics, 2017, 122, 9545-9551.	0.8	17
90	Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset. Geoscience Letters, 2017, 4, 23.	1.3	8

#	Article	IF	CITATIONS
91	Introduction to the thematic series "Coupling of the magnetosphere–ionosphere system― Geoscience Letters, 2017, 4, .	1.3	1
92	The impact of an ICME on the Jovian Xâ€ray aurora. Journal of Geophysical Research: Space Physics, 2016, 121, 2274-2307.	0.8	51
93	Effects of ULF wave power on relativistic radiation belt electrons: 8–9 October 2012 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2016, 121, 11,766.	0.8	18
94	Identifying the magnetotail lobes with Cluster magnetometer data. Journal of Geophysical Research: Space Physics, 2016, 121, 1436-1446.	0.8	6
95	Accurately characterizing the importance of waveâ€particle interactions in radiation belt dynamics: The pitfalls of statistical wave representations. Journal of Geophysical Research: Space Physics, 2016, 121, 7895-7899.	0.8	21
96	Substructures within a dipolarization front revealed by highâ€ŧemporal resolution Cluster observations. Journal of Geophysical Research: Space Physics, 2016, 121, 5185-5202.	0.8	9
97	What effect do substorms have on the content of the radiation belts?. Journal of Geophysical Research: Space Physics, 2016, 121, 6292-6306.	0.8	40
98	Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt. Nature Physics, 2016, 12, 978-983.	6.5	97
99	A new technique for determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE). Journal of Geophysical Research: Space Physics, 2015, 120, 10,592.	0.8	78
100	Statistical characterization of the growth and spatial scales of the substorm onset arc. Journal of Geophysical Research: Space Physics, 2015, 120, 8503-8516.	0.8	52
101	The influence of solar wind variability on magnetospheric ULF wave power. Annales Geophysicae, 2015, 33, 697-701.	0.6	5
102	A physical explanation for the magnetic decrease ahead of dipolarization fronts. Annales Geophysicae, 2015, 33, 1301-1309.	0.6	40
103	Autumn MIST 2014. Astronomy and Geophysics, 2015, 56, 1.34-1.38.	0.1	0
104	Increases in plasma sheet temperature with solar wind driving during substorm growth phases. Geophysical Research Letters, 2014, 41, 8713-8721.	1.5	22
105	Automated determination of auroral breakup during the substorm expansion phase using all-sky imager data. Journal of Geophysical Research: Space Physics, 2014, 119, 1414-1427.	0.8	5
106	Modeling cross L shell impacts of magnetopause shadowing and ULF wave radial diffusion in the Van Allen belts. Geophysical Research Letters, 2014, 41, 6556-6562.	1.5	29
107	Current reduction in a pseudoâ€breakup event: THEMIS observations. Journal of Geophysical Research: Space Physics, 2014, 119, 8178-8187.	0.8	15
108	Field line resonances as a trigger and a tracer for substorm onset. Journal of Geophysical Research: Space Physics, 2014, 119, 5343-5363.	0.8	23

#	Article	IF	CITATIONS
109	Inner magnetospheric onset preceding reconnection and tail dynamics during substorms: Can substorms initiate in two different regions?. Journal of Geophysical Research: Space Physics, 2014, 119, 9684-9701.	0.8	21
110	In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge. Journal of Geophysical Research: Space Physics, 2014, 119, 927-946.	0.8	49
111	Analytic expressions for ULF wave radiation belt radial diffusion coefficients. Journal of Geophysical Research: Space Physics, 2014, 119, 1587-1605.	0.8	179
112	Magnetospheric convection and magnetopause shadowing effects in ULF waveâ€driven energetic electron transport. Journal of Geophysical Research: Space Physics, 2013, 118, 2919-2927.	0.8	15
113	Comment on "Formation of substorm Pi2: A coherent response to auroral streamers and currents―by Y. Nishimura et al Journal of Geophysical Research: Space Physics, 2013, 118, 3488-3496.	0.8	5
114	Discovery of the action of a geophysical synchrotron in the Earth's Van Allen radiation belts. Nature Communications, 2013, 4, .	5.8	104
115	Sources of electron pitch angle anisotropy in the magnetotail plasma sheet. Journal of Geophysical Research: Space Physics, 2013, 118, 6042-6054.	0.8	32
116	The detailed spatial structure of fieldâ€aligned currents comprising the substorm current wedge. Journal of Geophysical Research: Space Physics, 2013, 118, 7714-7727.	0.8	63
117	Reduction in fieldâ€eligned currents preceding and local to auroral substorm onset. Geophysical Research Letters, 2012, 39, .	1.5	24
118	Combined THEMIS and groundâ€based observations of a pair of substormâ€associated electron precipitation events. Journal of Geophysical Research, 2012, 117, .	3.3	13
119	Groundâ€based magnetometer determination of in situ Pc4–5 ULF electric field wave spectra as a function of solar wind speed. Journal of Geophysical Research, 2012, 117, .	3.3	49
120	ULF wave derived radiation belt radial diffusion coefficients. Journal of Geophysical Research, 2012, 117, .	3.3	98
121	The correlation of ULF waves and auroral intensity before, during and after substorm expansion phase onset. Journal of Geophysical Research, 2012, 117, .	3.3	22
122	Alfvén: magnetosphere—ionosphere connection explorers. Experimental Astronomy, 2012, 33, 445-489.	1.6	9
123	On the nature of ULF wave power during nightside auroral activations and substorms: 1. Spatial distribution. Journal of Geophysical Research, 2011, 116, .	3.3	13
124	On the nature of ULF wave power during nightside auroral activations and substorms: 2. Temporal evolution. Journal of Geophysical Research, 2011, 116, .	3.3	21
125	High-latitude GPS TEC changes associated with a sudden magnetospheric compression. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	15
126	Ultralow-frequency modulation of whistler-mode wave growth. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	23

#	Article	IF	CITATIONS
127	The dependence of Pi2 waveforms on periodic velocity enhancements within bursty bulk flows. Annales Geophysicae, 2011, 29, 493-509.	0.6	15
128	First radar observations in the vicinity of the plasmapause of pulsed ionospheric flows generated by bursty bulk flows. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	12
129	Dependence of ground-based Pc5 ULF wave power on F10.7 solar radio flux and solar cycle phase. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1500-1510.	0.6	17
130	High-latitude GPS TEC changes associated with sudden magnetospheric compression. , 2011, , .		0
131	Conjugate ground and multisatellite observations of compressionâ€related EMIC Pc1 waves and associated proton precipitation. Journal of Geophysical Research, 2010, 115, .	3.3	108
132	Comparison of the openâ€closed separatrix in a global magnetospheric simulation with observations: The role of the ring current. Journal of Geophysical Research, 2010, 115, .	3.3	19
133	Optical characterization of the growth and spatial structure of a substorm onset arc. Journal of Geophysical Research, 2010, 115, .	3.3	53
134	Modeling ULF waves in a compressed dipole magnetic field. Journal of Geophysical Research, 2010, 115, .	3.3	47
135	Comprehensive groundâ€based and in situ observations of substorm expansion phase onset. Journal of Geophysical Research, 2010, 115, .	3.3	15
136	Effects of substorm dynamics on magnetic signatures of the ionospheric Alfvén resonator. Journal of Geophysical Research, 2010, 115, .	3.3	30
137	Ground-based Pc5 ULF wave power: Solar wind speed and MLT dependence. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 1082-1092.	0.6	43
138	THEMIS observation of a substorm event on 04:35, 22 February 2008. Annales Geophysicae, 2009, 27, 1831-1841.	0.6	16
139	Response to Comment on "Tail Reconnection Triggering Substorm Onset― Science, 2009, 324, 1391-1391.	6.0	45
140	Reply to comment by K. Liou and Y.‣. Zhang on "Waveletâ€based ULF wave diagnosis of substorm expansion phase onsetâ€. Journal of Geophysical Research, 2009, 114, .	3.3	9
141	Mapping guided Alfvén wave magnetic field amplitudes observed on the ground to equatorial electric field amplitudes in space. Journal of Geophysical Research, 2009, 114, .	3.3	46
142	Waveletâ€based ULF wave diagnosis of substorm expansion phase onset. Journal of Geophysical Research, 2009, 114, .	3.3	40
143	Timing and localization of nearâ€Earth tail and ionospheric signatures during a substorm onset. Journal of Geophysical Research, 2009, 114, .	3.3	22
144	Timing and localization of ionospheric signatures associated with substorm expansion phase onset. Journal of Geophysical Research, 2009, 114, .	3.3	58

#	Article	IF	CITATIONS
145	The Upgraded CARISMA Magnetometer Array inÂtheÂTHEMIS Era. , 2009, , 413-451.		3
146	Nearâ \in Earth initiation of a terrestrial substorm. Journal of Geophysical Research, 2009, 114, .	3.3	60
147	First Results from the THEMIS Mission. Space Science Reviews, 2008, 141, 453-476.	3.7	171
148	The Upgraded CARISMA Magnetometer Array inÂtheÂTHEMIS Era. Space Science Reviews, 2008, 141, 413-451.	3.7	258
149	Electromagnetic waves generated by ionospheric feedback instability. Journal of Geophysical Research, 2008, 113, .	3.3	16
150	Magnetospheric quasi-static response to the dynamic magnetosheath: A THEMIS case study. Geophysical Research Letters, 2008, 35, .	1.5	22
151	Simultaneous THEMIS in situ and auroral observations of a small substorm. Geophysical Research Letters, 2008, 35, .	1.5	89
152	Multipoint observations of magnetospheric compressionâ€related EMIC Pc1 waves by THEMIS and CARISMA. Geophysical Research Letters, 2008, 35, .	1.5	141
153	Ionospheric localisation and expansion of longâ€period Pi1 pulsations at substorm onset. Geophysical Research Letters, 2008, 35, .	1.5	43
154	Tail Reconnection Triggering Substorm Onset. Science, 2008, 321, 931-935.	6.0	551
155	Statistical analysis of ground based magnetic field measurements with the field line resonance detector. Annales Geophysicae, 2008, 26, 3477-3489.	0.6	20
156	Equatorâ \in observations of drift mirror mode waves in the dawnside magnetosphere. Journal of Geophysical Research, 2007, 112, .	3.3	50
157	Electrodynamics of magnetosphereâ€ionosphere coupling and feedback on magnetospheric field line resonances. Journal of Geophysical Research, 2007, 112, .	3.3	21
158	Energy deposition in the ionosphere through a global field line resonance. Annales Geophysicae, 2007, 25, 2529-2539.	0.6	42
159	Multiple field line resonances: Optical, magnetic and absorption signatures. Planetary and Space Science, 2007, 55, 701-713.	0.9	21
160	Inertial Alfvén waves and acceleration of electrons in nonuniform magnetic fields. Geophysical Research Letters, 2006, 33, .	1.5	37
161	Coordinated observation of field line resonance in the mid-tail. Annales Geophysicae, 2006, 24, 707-723.	0.6	14
162	The outer radiation belt injection, transport, acceleration and loss satellite (ORBITALS): A canadian small satellite mission for ILWS. Advances in Space Research, 2006, 38, 1838-1860.	1.2	16

#	Article	IF	CITATIONS
163	Self-consistent electron acceleration due to inertial Alfvén wave pulses. Journal of Geophysical Research, 2005, 110, .	3.3	53
164	Magnetospheric field-line resonances: Ground-based observations and modeling. Journal of Geophysical Research, 2005, 110, .	3.3	34
165	Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. Journal of Geophysical Research, 2005, 110, .	3.3	131
166	Multi-instrument observations of ULF wave-driven discrete auroral arcs propagating sunward and equatorward from the poleward boundary of the duskside auroral oval. Physics of Plasmas, 2004, 11, 1250-1259.	0.7	12
167	Comparison of photometer and global MHD determination of the open-closed field line boundary. Journal of Geophysical Research, 2004, 109, .	3.3	35
168	Open-closed field line boundary position: A parametric study using an MHD model. Journal of Geophysical Research, 2004, 109, .	3.3	43
169	Solar wind modulation of cusp particle signatures and their associated ionospheric flows. Journal of Geophysical Research, 2004, 109, .	3.3	12
170	Statistics of the mid-altitude cusp observed by Polar. Geophysical Research Letters, 2002, 29, 5-1-5-4.	1.5	1
171	Ground-based observations of the auroral zone and polar cap ionospheric responses to dayside transient reconnection. Annales Geophysicae, 2002, 20, 781-794.	0.6	27
172	Ground-based and Polar spacecraft observations of a giant (Pg) pulsation and its associated source mechanism. Journal of Geophysical Research, 2001, 106, 10837-10852.	3.3	37
173	Polar observations of the time-varying cusp. Journal of Geophysical Research, 2001, 106, 19057-19065.	3.3	5
174	The Role of Ultralow Frequency Waves in Radiation Belt Dynamics. Geophysical Monograph Series, 0, , 69-92.	0.1	21
175	ULF Wave-Driven Radial Diffusion Simulations of the Outer Radiation Belt. Geophysical Monograph Series, 0, , 139-150.	0.1	9
176	Exploring solar-terrestrial interactions via multiple imaging observers. Experimental Astronomy, 0, , 1.	1.6	3
177	Modelling the Varying Location of Field Line Resonances During Geomagnetic Storms. Journal of Geophysical Research: Space Physics, 0, , .	0.8	2
178	Direct Evidence of Magnetic Reconnection Onset via the Tearing Instability. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	2