
Ugur Ulusoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3657264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability. Powder Technology, 2004, 140, 68-78.	2.1	117
2	Determination of the shape, morphological and wettability properties of quartz and their correlations. Minerals Engineering, 2003, 16, 951-964.	1.8	100
3	Influence of shape characteristics of talc mineral on the column flotation behavior. International Journal of Mineral Processing, 2006, 78, 262-268.	2.6	64
4	Correlation of the surface roughness of some industrial minerals with their wettability parameters. Chemical Engineering and Processing: Process Intensification, 2005, 44, 555-563.	1.8	63
5	Role of shape properties of calcite and barite particles on apparent hydrophobicity. Chemical Engineering and Processing: Process Intensification, 2004, 43, 1047-1053.	1.8	60
6	Application of ANOVA to image analysis results of talc particles produced by different milling. Powder Technology, 2008, 188, 133-138.	2.1	49
7	Effects of the shape properties of talc and quartz particles on the wettability based separation processes. Applied Surface Science, 2004, 233, 204-212.	3.1	47
8	Investigation of the effect of agglomeration time, pH and various salts on the cleaning of Zonguldak bituminous coal by oil agglomeration1. Fuel, 2002, 81, 1131-1137.	3.4	43
9	Particle size distribution modeling of milled coals by dynamic image analysis and mechanical sieving. Fuel Processing Technology, 2016, 143, 100-109.	3.7	43
10	Comparison of different 2D image analysis measurement techniques for the shape of talc particles produced by different media milling. Minerals Engineering, 2011, 24, 91-97.	1.8	39
11	Flotation responses to the morphological properties of particles measured with three-dimensional approach. International Journal of Mineral Processing, 2005, 75, 229-236.	2.6	34
12	Comparison of particle size distribution of celestite mineral by machine vision ΣVolume approach and mechanical sieving. Powder Technology, 2012, 215-216, 137-146.	2.1	30
13	Kinetics of dry grinding of industrial minerals: calcite and barite. International Journal of Mineral Processing, 2002, 67, 29-42.	2.6	29
14	Variation of critical surface tension for wetting of minerals with roughness determined by Surtronic 3+ instrument. International Journal of Mineral Processing, 2004, 74, 61-69.	2.6	23
15	Dynamic image analysis of calcite particles created by different mills. International Journal of Mineral Processing, 2014, 133, 83-90.	2.6	22
16	Dynamic image based shape analysis of hard and lignite coal particles ground by laboratory ball and gyro mills. Fuel Processing Technology, 2014, 126, 350-358.	3.7	20
17	Machine vision methods based particle size distribution of ball- and gyro-milled lignite and hard coal. Powder Technology, 2016, 297, 71-80.	2.1	18
18	Characterisation of surface roughness and wettability of salt-type minerals: calcite and barite. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2004, 113, 145-152.	0.6	17

UGUR ULUSOY

#	Article	IF	CITATIONS
19	Zinc Recovery from a Lead–Zinc–Copper Ore by Ultrasonically Assisted Column Flotation. Particulate Science and Technology, 2015, 33, 349-356.	1.1	17
20	Response of rough and acute surfaces of pyrite with 3-D approach to the flotation. Journal of Mining Science, 2006, 42, 393-402.	0.1	16
21	Zinc Recovery From Lead–Zinc–Copper Complex Ores by Using Column Flotation. Mineral Processing and Extractive Metallurgy Review, 2012, 33, 327-338.	2.6	14
22	An optimization study of yield for a coal washing plant from Zonguldak region. Fuel Processing Technology, 2013, 115, 110-114.	3.7	13
23	Determination of optimum washing conditions for a lignite coal based on ash and sulfur content. Fuel, 2014, 123, 52-58.	3.4	13
24	Quantifying of particle shape differences of differently milled barite using a novel technique: Dynamic image analysis. Materialia, 2019, 8, 100434.	1.3	10
25	Dynamic image analysis of differently milled talc particles and comparison by various methods. Particulate Science and Technology, 2018, 36, 332-339.	1.1	6
26	Particle shape characterization of shaking table streams in a Turkish chromite concentration plant by using dynamic imaging and microscopical techniques. Particulate Science and Technology, 0, , 1-10.	1.1	5
27	Correlation of the Particle Size Distribution Parameters with Sieving Rate Constant. Particulate Science and Technology, 2014, 32, 118-122.	1.1	4
28	Combination of the Particle Size Distributions of Some Industrial Minerals Measured by Andreasen Pipette and Sieving Techniques. Particle and Particle Systems Characterization, 2006, 23, 448-456.	1.2	3
29	Prediction of average shape values of quartz particles by vibrating disc and ball milling using dynamic image analysis based on established time-dependent shape models. Particulate Science and Technology, 2022, 40, 870-886.	1.1	3
30	Breakage parameters of chromite and simulation of the product-size distributions. Developments in Mineral Processing, 2000, 13, C4-16-C4-21.	0.0	2
31	REVIEW: COMPARISON OF ULTRASONICALLY AIDED ZINC BENEFICIATION BY MECHANICAL FLOTATION AND COLUMN FLOTATION CELL. EUREKA, Physics and Engineering, 2021, , 3-13.	0.4	2
32	Combination of Different Size Distributions for Mineral Particles by Applying Experimentally Determined Apparent Mean Shape Factor. Particulate Science and Technology, 2008, 26, 158-168.	1.1	1
33	COMPARISON OF PARTICLE SHAPES OF CONVENTIONALLY GROUND BARITE, CALCITE AND TALC MINERALS BY DYNAMIC IMAGING TECHNIQUE: A REVIEW. EUREKA, Physics and Engineering, 2020, 5, 80-90.	0.4	1
34	Concentration of celestite by oil agglomeration. , 2017, , .		0
35	Quantifying of Particle Shape Differences of Different Milled Barite Using a Novel Technique; Dynamic Image Analysis. SSRN Electronic Journal, 0, , .	0.4	0