
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/365685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes. Science, 2003, 300, 625-627.	6.0	2,321
2	A possible role for Ï€â€stacking in the selfâ€assembly of amyloid fibrils. FASEB Journal, 2002, 16, 77-83.	0.2	1,010
3	Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chemical Society Reviews, 2007, 36, 1263.	18.7	931
4	Inhibition of Amyloid Fibril Formation by Polyphenols: Structural Similarity and Aromatic Interactions as a Common Inhibition Mechanism. Chemical Biology and Drug Design, 2006, 67, 27-37.	1.5	859
5	Rigid, Self-Assembled Hydrogel Composed of a Modified Aromatic Dipeptide. Advanced Materials, 2006, 18, 1365-1370.	11.1	742
6	Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chemical Society Reviews, 2017, 46, 4661-4708.	18.7	670
7	The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chemical Society Reviews, 2014, 43, 6881-6893.	18.7	580
8	Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotechnology, 2006, 1, 195-200.	15.6	529
9	Amyloids: Not Only Pathological Agents but Also Ordered Nanomaterials. Angewandte Chemie - International Edition, 2008, 47, 4062-4069.	7.2	521
10	Biomimetic peptide self-assembly for functional materials. Nature Reviews Chemistry, 2020, 4, 615-634.	13.8	411
11	Formation of Closed-Cage Nanostructures by Self-Assembly of Aromatic Dipeptides. Nano Letters, 2004, 4, 581-585.	4.5	401
12	Analysis of the Minimal Amyloid-forming Fragment of the Islet Amyloid Polypeptide. Journal of Biological Chemistry, 2001, 276, 34156-34161.	1.6	393
13	Self-Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures. Nano Letters, 2005, 5, 1343-1346.	4.5	392
14	Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications. Acta Biomaterialia, 2014, 10, 1671-1682.	4.1	384
15	Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotechnology, 2009, 4, 849-854.	15.6	372
16	Strong Piezoelectricity in Bioinspired Peptide Nanotubes. ACS Nano, 2010, 4, 610-614.	7.3	370
17	Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chemical Society Reviews, 2016, 45, 3935-3953.	18.7	366
18	Self-assembling peptide semiconductors. Science, 2017, 358, .	6.0	357

#	Article	IF	CITATIONS
19	Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nature Chemical Biology, 2012, 8, 701-706.	3.9	354
20	Thermal and Chemical Stability of Diphenylalanine Peptide Nanotubes:  Implications for Nanotechnological Applications. Langmuir, 2006, 22, 1313-1320.	1.6	349
21	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	18.7	345
22	Hierarchically oriented organization inÂsupramolecular peptide crystals. Nature Reviews Chemistry, 2019, 3, 567-588.	13.8	326
23	Interaction of the Mammalian Antibacterial Peptide Cecropin P1 with Phospholipid Vesicles. Biochemistry, 1995, 34, 11479-11488.	1.2	316
24	Amyloid Fibril Formation by Pentapeptide and Tetrapeptide Fragments of Human Calcitonin. Journal of Biological Chemistry, 2002, 277, 35475-35480.	1.6	315
25	Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nature Communications, 2017, 8, 1365.	5.8	299
26	Self-Assembled Fmoc-Peptides as a Platform for the Formation of Nanostructures and Hydrogels. Biomacromolecules, 2009, 10, 2646-2651.	2.6	297
27	Novel Electrochemical Biosensing Platform Using Self-Assembled Peptide Nanotubes. Nano Letters, 2005, 5, 183-186.	4.5	289
28	Structure and Orientation of the Mammalian Antibacterial Peptide Cecropin P1 within Phospholipid Membranes. Journal of Molecular Biology, 1996, 258, 860-870.	2.0	262
29	Peptide Nanotube-Modified Electrodes for Enzymeâ^'Biosensor Applications. Analytical Chemistry, 2005, 77, 5155-5159.	3.2	252
30	Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology. Chemical Society Reviews, 2018, 47, 3406-3420.	18.7	241
31	Fabrication of Coaxial Metal Nanocables Using a Self-Assembled Peptide Nanotube Scaffold. Nano Letters, 2006, 6, 1594-1597.	4.5	231
32	Allostery and Intrinsic Disorder Mediate Transcription Regulation by Conditional Cooperativity. Cell, 2010, 142, 101-111.	13.5	226
33	Mechanisms of amyloid fibril self-assembly and inhibition. FEBS Journal, 2005, 272, 5971-5978.	2.2	223
34	Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations. Biophysical Journal, 2009, 96, 5020-5029.	0.2	212
35	Inhibition of Islet Amyloid Polypeptide Fibril Formation:  A Potential Role for Heteroaromatic Interactions. Biochemistry, 2004, 43, 14454-14462.	1.2	208
36	The "Correctly Folded―State of Proteins: Is It a Metastable State?. Angewandte Chemie - International Edition, 2002, 41, 257.	7.2	205

#	Article	IF	CITATIONS
37	Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Israel Journal of Chemistry, 2005, 45, 363-371.	1.0	201
38	Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nature Communications, 2014, 5, 5219.	5.8	197
39	Mode of Action of the Antibacterial Cecropin B2: A Spectrofluorometric Study. Biochemistry, 1994, 33, 10681-10692.	1.2	194
40	Blue Luminescence Based on Quantum Confinement at Peptide Nanotubes. Nano Letters, 2009, 9, 3111-3115.	4.5	187
41	Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications. Physical Biology, 2006, 3, S10-S19.	0.8	182
42	Identification and Characterization of a Novel Molecular-recognition and Self-assembly Domain within the Islet Amyloid Polypeptide. Journal of Molecular Biology, 2002, 322, 1013-1024.	2.0	180
43	Elementary Building Blocks of Self-Assembled Peptide Nanotubes. Journal of the American Chemical Society, 2010, 132, 15632-15636.	6.6	174
44	The Human Islet Amyloid Polypeptide Forms Transient Membrane-Active Prefibrillar Assemblies. Biochemistry, 2003, 42, 10971-10977.	1.2	168
45	Molecular Self-Assembly of Peptide Nanostructures: Mechanism of Association and Potential Uses. Current Nanoscience, 2006, 2, 105-111.	0.7	168
46	Orally Administrated Cinnamon Extract Reduces β-Amyloid Oligomerization and Corrects Cognitive Impairment in Alzheimer's Disease Animal Models. PLoS ONE, 2011, 6, e16564.	1.1	160
47	The Rheological and Structural Properties of Fmoc-Peptide-Based Hydrogels: The Effect of Aromatic Molecular Architecture on Self-Assembly and Physical Characteristics. Langmuir, 2012, 28, 2015-2022.	1.6	158
48	Photoactive properties of supramolecular assembled short peptides. Chemical Society Reviews, 2019, 48, 4387-4400.	18.7	150
49	A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate. ACS Nano, 2019, 13, 163-175.	7.3	149
50	Expanding the Solvent Chemical Space for Self-Assembly of Dipeptide Nanostructures. ACS Nano, 2014, 8, 1243-1253.	7.3	146
51	Inhibition of Amyloid Fibril Formation and Cytotoxicity by Hydroxyindole Derivatives. Biochemistry, 2006, 45, 4727-4735.	1.2	145
52	Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nature Catalysis, 2019, 2, 977-985.	16.1	142
53	Why Are Diphenylalanine-Based Peptide Nanostructures so Rigid? Insights from First Principles Calculations. Journal of the American Chemical Society, 2014, 136, 963-969.	6.6	136
54	Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nature Nanotechnology, 2015, 10, 353-360.	15.6	136

#	Article	IF	CITATIONS
55	Bioinspired Design of Nanocages by Self-Assembling Triskelion Peptide Elements. Angewandte Chemie - International Edition, 2007, 46, 2002-2004.	7.2	133
56	Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends in Biotechnology, 2007, 25, 211-218.	4.9	133
57	Rigid helical-like assemblies from a self-aggregating tripeptide. Nature Materials, 2019, 18, 503-509.	13.3	133
58	Cognitiveâ€Performance Recovery of Alzheimer's Disease Model Mice by Modulation of Early Soluble Amyloidal Assemblies. Angewandte Chemie - International Edition, 2009, 48, 1981-1986.	7.2	131
59	Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chemical Reviews, 2021, 121, 1845-1893.	23.0	129
60	Complete Phenotypic Recovery of an Alzheimer's Disease Model by a Quinone-Tryptophan Hybrid Aggregation Inhibitor. PLoS ONE, 2010, 5, e11101.	1.1	129
61	Selfâ€Assembled Organic Nanostructures with Metallic‣ike Stiffness. Angewandte Chemie - International Edition, 2010, 49, 9939-9942.	7.2	128
62	Inhibition of Amyloid Fibril Formation by Peptide Analogues Modified withα-Aminoisobutyric Acid. Angewandte Chemie - International Edition, 2004, 43, 4041-4044.	7.2	127
63	Recent Advances in Organic and Organic–Inorganic Hybrid Materials for Piezoelectric Mechanical Energy Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	124
64	Use of biomolecular templates for the fabrication of metal nanowires. FEBS Journal, 2007, 274, 317-322.	2.2	122
65	Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nature Communications, 2018, 9, 3217.	5.8	122
66	Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly. ACS Nano, 2019, 13, 7300-7309.	7.3	121
67	Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorganic and Medicinal Chemistry, 2013, 21, 3517-3522.	1.4	119
68	Extension of the generic amyloid hypothesis to nonproteinaceous metabolite assemblies. Science Advances, 2015, 1, e1500137.	4.7	119
69	Self Assembly of Short Aromatic Peptides into Amyloid Fibrils and Related Nanostructures. Prion, 2007, 1, 32-35.	0.9	118
70	A model for the role of short selfâ€assembled peptides in the very early stages of the origin of life. FASEB Journal, 2005, 19, 1051-1055.	0.2	115
71	Direct Observation of the Release of Phenylalanine from Diphenylalanine Nanotubes. Journal of the American Chemical Society, 2006, 128, 6903-6908.	6.6	112
72	Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: Significant role of Asn ladder. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8174-8179.	3.3	109

#	Article	IF	CITATIONS
73	Tailorâ€Made Functional Peptide Selfâ€Assembling Nanostructures. Advanced Materials, 2018, 30, e1707083.	11.1	104
74	Formation of functional super-helical assemblies by constrained single heptad repeat. Nature Communications, 2015, 6, 8615.	5.8	101
75	Design of metalâ€binding sites onto selfâ€assembled peptide fibrils. Biopolymers, 2009, 92, 164-172.	1.2	95
76	Chiral modulation of amyloid beta fibrillation and cytotoxicity by enantiomeric carbon dots. Chemical Communications, 2018, 54, 7762-7765.	2.2	95
77	Inhibiting α-Synuclein Oligomerization by Stable Cell-Penetrating β-Synuclein Fragments Recovers Phenotype of Parkinson's Disease Model Flies. PLoS ONE, 2010, 5, e13863.	1.1	92
78	Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology. Journal of Peptide Science, 2008, 14, 217-223.	0.8	91
79	Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly. ACS Nano, 2016, 10, 7436-7442.	7.3	91
80	Structural Transition in Peptide Nanotubes. Biomacromolecules, 2011, 12, 1349-1354.	2.6	90
81	Dynamic microfluidic control of supramolecular peptide self-assembly. Nature Communications, 2016, 7, 13190.	5.8	89
82	The Formation of Escherichia coli Curli Amyloid Fibrils is Mediated by Prion-like Peptide Repeats. Journal of Molecular Biology, 2005, 352, 245-252.	2.0	87
83	Quantum Confinement in Selfâ€Assembled Bioinspired Peptide Hydrogels. Advanced Materials, 2010, 22, 2311-2315.	11.1	86
84	Self-Assembly of Aromatic Amino Acid Enantiomers into Supramolecular Materials of High Rigidity. ACS Nano, 2020, 14, 1694-1706.	7.3	86
85	Interplay between protein glycosylation pathways in Alzheimer's disease. Science Advances, 2017, 3, e1601576.	4.7	85
86	Structural and functional characterization of the .alpha.5 segment of Bacillus thuringiensis .deltaendotoxin. Biochemistry, 1993, 32, 3429-3436.	1.2	84
87	A Blood-Brain Barrier (BBB) Disrupter Is Also a Potent α-Synuclein (α-syn) Aggregation Inhibitor. Journal of Biological Chemistry, 2013, 288, 17579-17588.	1.6	84
88	Expanding the Nanoarchitectural Diversity Through Aromatic Di- and Tri-Peptide Coassembly: Nanostructures and Molecular Mechanisms. ACS Nano, 2016, 10, 8316-8324.	7.3	84
89	Amino Acid Based Selfâ€assembled Nanostructures: Complex Structures from Remarkably Simple Building Blocks. ChemNanoMat, 2018, 4, 730-740.	1.5	84
90	Self-organization of Short Peptide Fragments: From Amyloid Fibrils to Nanoscale Supramolecular Assemblies. Supramolecular Chemistry, 2005, 17, 87-92.	1.5	83

#	Article	IF	CITATIONS
91	Molecular Mapping of the Recognition Interface between the Islet Amyloid Polypeptide and Insulin. Angewandte Chemie - International Edition, 2006, 45, 6476-6480.	7.2	83
92	Peptide Sequence and Amyloid Formation. Structure, 2004, 12, 439-455.	1.6	82
93	Bioinspired Stable and Photoluminescent Assemblies for Power Generation. Advanced Materials, 2019, 31, e1807481.	11.1	82
94	The Assembly and Organization of the $\hat{1}\pm 5$ and $\hat{1}\pm 7$ Helices from the Pore-forming Domain of Bacillusthuringiensis l'-Endotoxin. Journal of Biological Chemistry, 1995, 270, 2571-2578.	1.6	77
95	The YefM Antitoxin Defines a Family of Natively Unfolded Proteins. Journal of Biological Chemistry, 2004, 279, 8252-8261.	1.6	75
96	Characterization of Peptideâ€Nanostructureâ€Modified Electrodes and Their Application for Ultrasensitive Environmental Monitoring. Small, 2010, 6, 825-831.	5.2	75
97	Amyloidogenic hexapeptide fragment of medin: homology to functional islet amyloid polypeptide fragments. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2004, 11, 81-89.	1.4	74
98	Unusual Twoâ€ 5 tep Assembly of a Minimalistic Dipeptideâ€Based Functional Hypergelator. Advanced Materials, 2020, 32, e1906043.	11.1	73
99	Nanoengineered Peptideâ€Based Antimicrobial Conductive Supramolecular Biomaterial for Cardiac Tissue Engineering. Advanced Materials, 2021, 33, e2008715.	11.1	73
100	Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System. ACS Nano, 2018, 12, 3253-3262.	7.3	72
101	Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin. Biochemistry, 1993, 32, 12363-12371.	1.2	70
102	Selfâ€Assembled Peptide Nanoâ€ s uperstructure towards Enzyme Mimicking Hydrolysis. Angewandte Chemie - International Edition, 2021, 60, 17164-17170.	7.2	69
103	Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy- <scp>l</scp> -phenylalanine) Peptide Motif. ACS Nano, 2014, 8, 7220-7228.	7.3	68
104	Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nature Communications, 2021, 12, 2634.	5.8	68
105	Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Scientific Reports, 2014, 4, 4267.	1.6	67
106	Intrinsic Fluorescence of Metabolite Amyloids Allows Labelâ€Free Monitoring of Their Formation and Dynamics in Live Cells. Angewandte Chemie - International Edition, 2018, 57, 12444-12447.	7.2	67
107	The molecular mechanisms of the anti-amyloid effects of phenols. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2007, 14, 73-87.	1.4	66
108	Single amino acid bionanozyme for environmental remediation. Nature Communications, 2022, 13, 1505.	5.8	66

#	Article	IF	CITATIONS
109	Organization of Amino Acids into Layered Supramolecular Secondary Structures. Accounts of Chemical Research, 2018, 51, 2187-2197.	7.6	65
110	Green tea extracts interfere with the stressâ€protective activity of PrP ^C and the formation of PrP ^{Sc} . Journal of Neurochemistry, 2008, 107, 218-229.	2.1	64
111	Global analysis of tandem aromatic octapeptide repeats: The significance of the aromatic-glycine motif. Bioinformatics, 2002, 18, 880-883.	1.8	63
112	The yefM-yoeB Toxin-Antitoxin Systems of Escherichia coli and Streptococcus pneumoniae : Functional and Structural Correlation. Journal of Bacteriology, 2007, 189, 1266-1278.	1.0	63
113	Mechanistic Studies of the Process of Amyloid Fibrils Formation by the Use of Peptide Fragments and Analogues: Implications for the Design of Fibrillization Inhibitors. Current Medicinal Chemistry, 2002, 9, 1725-1735.	1.2	62
114	In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures. Molecular Microbiology, 2002, 46, 1391-1397.	1.2	62
115	Spontaneous structural transition and crystal formation in minimal supramolecular polymer model. Science Advances, 2016, 2, e1500827.	4.7	62
116	Diphenylalanine as a Reductionist Model for the Mechanistic Characterization of β <i>-</i> Amyloid Modulators. ACS Nano, 2017, 11, 5960-5969.	7.3	62
117	Stable and optoelectronic dipeptide assemblies for power harvesting. Materials Today, 2019, 30, 10-16.	8.3	62
118	Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials. ACS Nano, 2020, 14, 7181-7190.	7.3	62
119	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS Nano, 2020, 14, 10704-10715.	7.3	61
120	Bacoside-A, an Indian Traditional-Medicine Substance, Inhibits β-Amyloid Cytotoxicity, Fibrillation, and Membrane Interactions. ACS Chemical Neuroscience, 2017, 8, 884-891.	1.7	60
121	Stability and DNA Binding of the Phd Protein of the Phage P1 Plasmid Addiction System. Journal of Biological Chemistry, 1999, 274, 2652-2657.	1.6	59
122	Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity. ACS Nano, 2020, 14, 7025-7037.	7.3	59
123	Two Decades of Studying Functional Amyloids in Microorganisms. Trends in Microbiology, 2021, 29, 251-265.	3.5	58
124	Polyphenol-induced dissociation of various amyloid fibrils results in a methionine-independent formation of ROS. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1570-1577.	1.1	57
125	Expanding the Functional Scope of the Fmocâ€Diphenylalanine Hydrogelator by Introducing a Rigidifying and Chemically Active Urea Backbone Modification. Advanced Science, 2019, 6, 1900218.	5.6	57
126	Oligosaccharides Self-Assemble and Show Intrinsic Optical Properties. Journal of the American Chemical Society, 2019, 141, 4833-4838.	6.6	57

#	Article	IF	CITATIONS
127	Formation of Apoptosisâ€Inducing Amyloid Fibrils by Tryptophan. Israel Journal of Chemistry, 2017, 57, 729-737.	1.0	56
128	The self-assembling zwitterionic form of <scp>L</scp> -phenylalanine at neutral pH. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 326-331.	0.2	55
129	Targeting insulin amyloid assembly by small aromatic molecules: Toward rational design of aggregation inhibitors. Islets, 2009, 1, 210-215.	0.9	53
130	Differential inhibition of metabolite amyloid formation by generic fibrillation-modifying polyphenols. Communications Chemistry, 2018, 1, .	2.0	52
131	The Doc Toxin and Phd Antidote Proteins of the Bacteriophage P1 Plasmid Addiction System Form a Heterotrimeric Complex. Journal of Biological Chemistry, 1999, 274, 16813-16818.	1.6	51
132	Long-Range Spin-Selective Transport in Chiral Metal–Organic Crystals with Temperature-Activated Magnetization. ACS Nano, 2020, 14, 16624-16633.	7.3	51
133	Molecular dynamics simulation of the aggregation of the core-recognition motif of the islet amyloid polypeptide in explicit water. Proteins: Structure, Function and Bioinformatics, 2005, 59, 519-527.	1.5	49
134	A minimal length rigid helical peptide motif allows rational design of modular surfactants. Nature Communications, 2017, 8, 14018.	5.8	49
135	Reductionist Approach in Peptide-Based Nanotechnology. Annual Review of Biochemistry, 2018, 87, 533-553.	5.0	49
136	The Inhibitory Effect of Hydroxylated Carbon Nanotubes on the Aggregation of Human Islet Amyloid Polypeptide Revealed by a Combined Computational and Experimental Study. ACS Chemical Neuroscience, 2018, 9, 2741-2752.	1.7	49
137	High-Efficiency Fluorescence through Bioinspired Supramolecular Self-Assembly. ACS Nano, 2020, 14, 2798-2807.	7.3	49
138	Guest Molecule-Mediated Energy Harvesting in a Conformationally Sensitive Peptide–Metal Organic Framework. Journal of the American Chemical Society, 2022, 144, 3468-3476.	6.6	49
139	Functional Single-Chain Polymer Nanoparticles: Targeting and Imaging Pancreatic Tumors <i>in Vivo</i> . Biomacromolecules, 2016, 17, 3213-3221.	2.6	48
140	Rigid Tightly Packed Amino Acid Crystals as Functional Supramolecular Materials. ACS Nano, 2019, 13, 14477-14485.	7.3	48
141	Fibril formation and therapeutic targeting of amyloid-like structures in a yeast model of adenine accumulation. Nature Communications, 2019, 10, 62.	5.8	48
142	The minimal amyloid-forming fragment of the islet amyloid polypeptide is a glycolipid-binding domain. FEBS Journal, 2006, 273, 5724-5735.	2.2	47
143	Spectral Transition in Bioâ€Inspired Selfâ€Assembled Peptide Nucleic Acid Photonic Crystals. Advanced Materials, 2016, 28, 2195-2200.	11.1	47
144	Liquid–Liquid Phase Separation of Tau Protein Is Encoded at the Monomeric Level. Journal of Physical Chemistry Letters, 2021, 12, 2576-2586.	2.1	47

#	Article	IF	CITATIONS
145	Expanding the Structural Diversity and Functional Scope of Diphenylalanine-Based Peptide Architectures by Hierarchical Coassembly. Journal of the American Chemical Society, 2021, 143, 17633-17645.	6.6	47
146	The Selfâ€Assembly of Helical Peptide Building Blocks. ChemNanoMat, 2016, 2, 323-332.	1.5	46
147	Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer's disease-like symptoms in animal model. Cellular and Molecular Life Sciences, 2020, 77, 2795-2813.	2.4	46
148	Completely different amyloidogenic potential of nearly identical peptide fragments. Biopolymers, 2003, 69, 161-164.	1.2	45
149	Generic inhibition of amyloidogenic proteins by two naphthoquinone–tryptophan hybrid molecules. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1962-1973.	1.5	44
150	Piezoelectric Peptide and Metabolite Materials. Research, 2019, 2019, 9025939.	2.8	44
151	Controlled Assembly of Peptide Nanotubes Triggered by Enzymatic Activation of Self-Immolative Dendrimers. ChemBioChem, 2007, 8, 859-862.	1.3	43
152	Quinolinic Acid Amyloid-like Fibrillar Assemblies Seed α-Synuclein Aggregation. Journal of Molecular Biology, 2018, 430, 3847-3862.	2.0	43
153	Inhibition of amyloid oligomerization into different supramolecular architectures by small molecules: mechanistic insights and design rules. Future Medicinal Chemistry, 2017, 9, 797-810.	1.1	42
154	Novel Mannitol-Based Small Molecules for Inhibiting Aggregation of α-Synuclein Amyloids in Parkinson's Disease. Frontiers in Molecular Biosciences, 2019, 6, 16.	1.6	42
155	Mechanistic insights into remodeled Tau-derived PHF6 peptide fibrils by Naphthoquinone-Tryptophan hybrids. Scientific Reports, 2018, 8, 71.	1.6	41
156	Biological and Chemical Decoration of Peptide Nanostructures via Biotin–Avidin Interactions. Journal of Nanoscience and Nanotechnology, 2007, 7, 2239-2245.	0.9	40
157	Molecular selfâ€assembly using peptide nucleic acids. Biopolymers, 2017, 108, e22930.	1.2	40
158	Stoichiometry-controlled secondary structure transition of amyloid-derived supramolecular dipeptide co-assemblies. Communications Chemistry, 2019, 2, .	2.0	40
159	Vertically Aligned Peptide Nanostructures Using Plasma-Enhanced Chemical Vapor Deposition. Biomacromolecules, 2014, 15, 533-540.	2.6	39
160	Naphthoquinone-Tryptophan Hybrid Inhibits Aggregation of the Tau-Derived Peptide PHF6 and Reduces Neurotoxicity. Journal of Alzheimer's Disease, 2016, 51, 165-178.	1.2	39
161	Accelerated charge transfer in water-layered peptide assemblies. Energy and Environmental Science, 2020, 13, 96-101.	15.6	39
162	Biocompatible Hybrid Organic/Inorganic Microhydrogels Promote Bacterial Adherence and Eradication <i>in Vitro</i> and <i>in Vivo</i> . Nano Letters, 2020, 20, 1590-1597.	4.5	38

#	Article	IF	CITATIONS
163	Phenolsulfonphthalein, but Not Phenolphthalein, Inhibits Amyloid Fibril Formation: Implications for the Modulation of Amyloid Self-Assembly. Biochemistry, 2008, 47, 5896-5904.	1.2	37
164	Selective Inhibition of Aggregation and Toxicity of a Tauâ€Derived Peptide using Its Glycosylated Analogues. Chemistry - A European Journal, 2016, 22, 5945-5952.	1.7	37
165	Composite of Peptideâ€Supramolecular Polymer and Covalent Polymer Comprises a New Multifunctional, Bioâ€Inspired Soft Material. Macromolecular Rapid Communications, 2019, 40, e1900175.	2.0	37
166	Exploring the self-assembly of glycopeptides using a diphenylalanine scaffold. Organic and Biomolecular Chemistry, 2011, 9, 5755.	1.5	36
167	Enhanced Nanoassembly-Incorporated Antibacterial Composite Materials. ACS Applied Materials & Interfaces, 2019, 11, 21334-21342.	4.0	36
168	The Role of the 14–20 Domain of the Islet Amyloid Polypeptide in Amyloid Formation. Experimental Diabetes Research, 2008, 2008, 1-8.	3.8	35
169	The generic amyloid formation inhibition effect of a designed small aromatic β-breaking peptide. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2011, 18, 119-127.	1.4	35
170	Mechanistic perspective and functional activity of insulin in amylin aggregation. Chemical Science, 2018, 9, 4244-4252.	3.7	35
171	Bacillus thuringiensisCytolytic Toxin Associates Specifically with Its Synthetic Helices A and C in the Membrane Bound State. Implications for the Assembly of Oligomeric Transmembrane Poresâ€. Biochemistry, 1997, 36, 15546-15554.	1.2	34
172	The von Hippel-Lindau Tumor Suppressor Protein Is a Molten Globule under Native Conditions. Journal of Biological Chemistry, 2004, 279, 17190-17196.	1.6	34
173	The Preferred Conformation of the Tripeptide Ala-Phe-Ala in Water Is an Inverse γ-Turn: Implications for Protein Folding and Drug Designâ€. Biochemistry, 2005, 44, 14170-14178.	1.2	34
174	The early stages of amyloid formation: Biophysical and structural characterization of human calcitonin pre-fibrillar assemblies. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2006, 13, 216-225.	1.4	34
175	Synergetic functional properties of two-component single amino acid-based hydrogels. CrystEngComm, 2015, 17, 8105-8112.	1.3	34
176	The YoeB Toxin Is a Folded Protein That Forms a Physical Complex with the Unfolded YefM Antitoxin. Journal of Biological Chemistry, 2005, 280, 30063-30072.	1.6	33
177	Doxycycline hinders phenylalanine fibril assemblies revealing a potential novel therapeutic approach in phenylketonuria. Scientific Reports, 2015, 5, 15902.	1.6	33
178	Enhanced Fluorescence for Bioassembly by Environment‣witching Doping of Metal Ions. Advanced Functional Materials, 2020, 30, 1909614.	7.8	33
179	Prediction and characterization of liquid-liquid phase separation of minimalistic peptides. Cell Reports Physical Science, 2021, 2, 100579.	2.8	33
180	Structural and Thermodynamic Characterization of the <i>Escherichia coli</i> RelBE Toxinâ^'Antitoxin System:  Indication for a Functional Role of Differential Stability. Biochemistry, 2007, 46, 12152-12163.	1.2	32

#	Article	IF	CITATIONS
181	Structural Basis for Inhibiting β-Amyloid Oligomerization by a Non-coded β-Breaker-Substituted Endomorphin Analogue. ACS Chemical Biology, 2011, 6, 1265-1276.	1.6	32
182	Elastic instability-mediated actuation by a supra-molecular polymer. Nature Physics, 2016, 12, 926-930.	6.5	32
183	Aromatic dipeptides light up. Nature Nanotechnology, 2016, 11, 309-310.	15.6	32
184	Multiporous Supramolecular Microspheres for Artificial Photosynthesis. Chemistry of Materials, 2017, 29, 4454-4460.	3.2	32
185	Biophotonics of Native Silk Fibrils. Macromolecular Bioscience, 2018, 18, e1700295.	2.1	31
186	Yeast Models for the Study of Amyloid-Associated Disorders and Development of Future Therapy. Frontiers in Molecular Biosciences, 2019, 6, 15.	1.6	31
187	Diversity for self-assembly. Nature Chemistry, 2010, 2, 1010-1011.	6.6	30
188	Membrane interactions of the sodium channel S4 segment and its fluorescently-labeled analogs. Biochemistry, 1992, 31, 8868-8875.	1.2	29
189	Genetic Engineering of Biomolecular Scaffolds for the Fabrication of Organic and Metallic Nanowires. Angewandte Chemie - International Edition, 2010, 49, 3018-3021.	7.2	29
190	Improvement of the Mechanical Properties of Epoxy by Peptide Nanotube Fillers. Small, 2011, 7, 1007-1011.	5.2	29
191	Converting the Highly Amyloidogenic Human Calcitonin into a Powerful Fibril Inhibitor by Three-dimensional Structure Homology with a Non-amyloidogenic Analogue. Journal of Biological Chemistry, 2011, 286, 2707-2718.	1.6	29
192	Metabolite amyloids: a new paradigm for inborn error of metabolism disorders. Journal of Inherited Metabolic Disease, 2016, 39, 483-488.	1.7	29
193	Antibodies towards Tyrosine Amyloid-Like Fibrils Allow Toxicity Modulation and Cellular Imaging of the Assemblies. Molecules, 2018, 23, 1273.	1.7	29
194	Homocysteine fibrillar assemblies display cross-talk with Alzheimer's disease β-amyloid polypeptide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
195	Cathepsin nanofiber substrates as potential agents for targeted drug delivery. Journal of Controlled Release, 2017, 257, 60-67.	4.8	28
196	Thermodynamics of Polypeptide Supramolecular Assembly in the Short-Chain Limit. Journal of the American Chemical Society, 2017, 139, 16134-16142.	6.6	28
197	Bioinspired Flexible and Tough Layered Peptide Crystals. Advanced Materials, 2018, 30, 1704551.	11.1	28
198	Nanomechanical Properties and Phase Behavior of Phenylalanine Amyloid Ribbon Assemblies and Amorphous Self-Healing Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 21992-22001.	4.0	28

#	Article	IF	CITATIONS
199	Differential effects of putative N-glycosylation sites in human Tau on Alzheimer's disease-related neurodegeneration. Cellular and Molecular Life Sciences, 2021, 78, 2231-2245.	2.4	28
200	Creating Prebiotic Sanctuary: Self-Assembling Supramolecular Peptide Structures Bind and Stabilize RNA. Origins of Life and Evolution of Biospheres, 2011, 41, 121-132.	0.8	27
201	Differential inhibition of α-synuclein oligomeric and fibrillar assembly in parkinson's disease model by cinnamon extract. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1628-1635.	1.1	27
202	The Influence of Chemical Chaperones on Enzymatic Activity under Thermal and Chemical Stresses: Common Features and Variation among Diverse Chemical Families. PLoS ONE, 2014, 9, e88541.	1.1	27
203	Synthesis of Nonequilibrium Supramolecular Peptide Polymers on a Microfluidic Platform. Journal of the American Chemical Society, 2016, 138, 9589-9596.	6.6	27
204	Formation of bacterial pilus-like nanofibres by designed minimalistic self-assembling peptides. Nature Communications, 2016, 7, 13482.	5.8	27
205	Molecular Engineering of Self-Assembling Diphenylalanine Analogues Results in the Formation of Distinctive Microstructures. Chemistry of Materials, 2016, 28, 4341-4348.	3.2	27
206	Seeding of proteins into amyloid structures by metabolite assemblies may clarify certain unexplained epidemiological associations. Open Biology, 2018, 8, 170229.	1.5	27
207	Integrating in vitro and in silico approaches to evaluate the "dual functionality―of palmatine chloride in inhibiting and disassembling Tau-derived VQIVYK peptide fibrils. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1565-1575.	1.1	27
208	Tryptophan-galactosylamine conjugates inhibit and disaggregate amyloid fibrils of Aβ42 and hIAPP peptides while reducing their toxicity. Communications Biology, 2020, 3, 484.	2.0	27
209	Ultrasound-Responsive Peptide Nanogels to Balance Conflicting Requirements for Deep Tumor Penetration and Prolonged Blood Circulation. ACS Nano, 2022, 16, 9183-9194.	7.3	27
210	Realâ€Time Inâ€Situ Monitoring of a Tunable Pentapeptide Gel–Crystal Transition. Angewandte Chemie - International Edition, 2019, 58, 15869-15875.	7.2	26
211	Novel model of secreted human tau protein reveals the impact of the abnormal N-glycosylation of tau on its aggregation propensity. Scientific Reports, 2019, 9, 2254.	1.6	26
212	Optical property modulation of Fmoc group by pH-dependent self-assembly. RSC Advances, 2015, 5, 73914-73918.	1.7	25
213	Searching sequence space. Nature Chemistry, 2015, 7, 14-15.	6.6	25
214	Rosmarinic Acid Restores Complete Transparency of Sonicated Human Cataract Ex Vivo and Delays Cataract Formation In Vivo. Scientific Reports, 2018, 8, 9341.	1.6	25
215	Antagonistic Activity of Naphthoquinone-Based Hybrids toward Amyloids Associated with Alzheimer's Disease and Type-2 Diabetes. ACS Chemical Neuroscience, 2019, 10, 3510-3520.	1.7	25
216	Self-assembly of Functional Nanostructures by Short Helical Peptide Building Blocks. Protein and Peptide Letters, 2019, 26, 88-97.	0.4	25

#	Article	IF	CITATIONS
217	Electrical Conductivity, Selective Adhesion, and Biocompatibility in Bacteriaâ€Inspired Peptide–Metal Selfâ€Supporting Nanocomposites. Advanced Materials, 2019, 31, e1807285.	11.1	25
218	Coâ€Assembly between Fmoc Diphenylalanine and Diphenylalanine within a 3D Fibrous Viscous Network Confers Atypical Curvature and Branching. Angewandte Chemie - International Edition, 2020, 59, 23731-23739.	7.2	25
219	Modulation of physical properties of organic cocrystals by amino acid chirality. Materials Today, 2021, 42, 29-40.	8.3	25
220	Bio-assisted synthesis of bimetallic nanoparticles featuring antibacterial and photothermal properties for the removal of biofilms. Journal of Nanobiotechnology, 2021, 19, 452.	4.2	25
221	Cl-NQTrp Alleviates Tauopathy Symptoms in a Model Organism through the Inhibition of Tau Aggregation-Engendered Toxicity. Neurodegenerative Diseases, 2017, 17, 73-82.	0.8	24
222	Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nature Communications, 2019, 10, 5256.	5.8	24
223	Formation of low-dimensional crystalline nucleus region during insulin amyloidogenesis process. Biochemical and Biophysical Research Communications, 2012, 419, 232-237.	1.0	23
224	Disruption of diphenylalanine assembly by a Boc-modified variant. Soft Matter, 2016, 12, 9451-9457.	1.2	23
225	Studying structure and dynamics of self-assembled peptide nanostructures using fluorescence and super resolution microscopy. Chemical Communications, 2017, 53, 7294-7297.	2.2	23
226	Inhibition of the Aggregation and Toxicity of the Minimal Amyloidogenic Fragment of Tau by Its Pro‣ubstituted Analogues. Chemistry - A European Journal, 2017, 23, 9618-9624.	1.7	23
227	Naphthoquinone Tryptophan Hybrids: A Promising Small Molecule Scaffold for Mitigating Aggregation of Amyloidogenic Proteins and Peptides. Frontiers in Cell and Developmental Biology, 2019, 7, 242.	1.8	23
228	A Personalized Multifunctional 3D Printed Shape Memoryâ€Displaying, Drug Releasing Tracheal Stent. Advanced Functional Materials, 2021, 31, 2108436.	7.8	23
229	Coâ€Assembly Induced Solid‣tate Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
230	The Lys-Specific Molecular Tweezer, CLR01, Modulates Aggregation of the Mutant p53 DNA Binding Domain and Inhibits Its Toxicity. Biochemistry, 2015, 54, 3729-3738.	1.2	22
231	Transition of Metastable Cross-α Crystals into Cross-β Fibrils by β-Turn Flipping. Journal of the American Chemical Society, 2019, 141, 363-369.	6.6	22
232	Peptide Coassembly to Enhance Piezoelectricity for Energy Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 6538-6546.	4.0	22
233	Monitoring and Targeting the Initial Dimerization Stage of Amyloid Selfâ€Assembly. Angewandte Chemie - International Edition, 2015, 54, 2062-2067.	7.2	21
234	Bioactive nanostructures branch out. Nature Nanotechnology, 2008, 3, 8-9.	15.6	20

#	Article	IF	CITATIONS
235	Metabolite amyloid-like fibrils interact with model membranes. Chemical Communications, 2018, 54, 4561-4564.	2.2	20
236	Functional metabolite assemblies $\hat{a} \in$ "a review. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	20
237	Toward peptide-based bioelectronics: reductionist design of conductive pili mimetics. Bioelectronics in Medicine, 2018, 1, 131-137.	2.0	20
238	Templating S100A9 amyloids on Aβ fibrillar surfaces revealed by charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses. Chemical Science, 2020, 11, 7031-7039.	3.7	20
239	Spontaneous Structural Transition in Phospholipid-Inspired Aromatic Phosphopeptide Nanostructures. ACS Nano, 2015, 9, 4085-4095.	7.3	19
240	Deciphering the Rules for Amino Acid Co-Assembly Based on Interlayer Distances. ACS Nano, 2019, 13, 1703-1712.	7.3	19
241	Kinetic and Thermodynamic Driving Factors in the Assembly of Phenylalanine-Based Modules. ACS Nano, 2021, 15, 18305-18311.	7.3	19
242	A Novel, Sensitive Assay for Behavioral Defects in Parkinson's Disease ModelDrosophila. Parkinson's Disease, 2012, 2012, 1-6.	0.6	18
243	Bacoside-A, an anti-amyloid natural substance, inhibits membrane disruption by the amyloidogenic determinant of prion protein through accelerating fibril formation. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2208-2214.	1.4	18
244	Altered protein glycosylation predicts Alzheimer's disease and modulates its pathology in disease model Drosophila. Neurobiology of Aging, 2017, 56, 159-171.	1.5	18
245	Bioinspired Supramolecular Packing Enables High Thermo‣ustainability. Angewandte Chemie - International Edition, 2020, 59, 19037-19041.	7.2	18
246	On-off transition and ultrafast decay of amino acid luminescence driven by modulation of supramolecular packing. IScience, 2021, 24, 102695.	1.9	18
247	Glucosylceramide Associated with Gaucher Disease Forms Amyloid-like Twisted Ribbon Fibrils That Induce α-Synuclein Aggregation. ACS Nano, 2021, 15, 11854-11868.	7.3	18
248	Design of Controllable Bio-Inspired Chiroptic Self-Assemblies. Biomacromolecules, 2016, 17, 2937-2945.	2.6	17
249	Synthetic 9-cis-beta-carotene inhibits photoreceptor degeneration in cultures of eye cups from rpe65rd12 mouse model of retinoid cycle defect. Scientific Reports, 2018, 8, 6130.	1.6	17
250	Opal-like Multicolor Appearance of Self-Assembled Photonic Array. ACS Applied Materials & Interfaces, 2018, 10, 20783-20789.	4.0	17
251	Methylations of Tryptophan-Modified Naphthoquinone Affect Its Inhibitory Potential toward Aβ Aggregation. Journal of Physical Chemistry B, 2013, 117, 1780-1789.	1.2	16
252	Ultrastructure of metallopeptide-based soft spherical morphologies. RSC Advances, 2014, 4, 64457-64465.	1.7	16

#	Article	IF	CITATIONS
253	Single cell imaging and quantification of TDP-43 and α-synuclein intercellular propagation. Scientific Reports, 2017, 7, 544.	1.6	16
254	Atomistic-Benchmarking towards a protocol development for rapid quantitative metrology of piezoelectric biomolecular materials. Applied Materials Today, 2020, 21, 100818.	2.3	15
255	Naphthoquinone–Dopamine Hybrids Inhibit αâ€6ynuclein Aggregation, Disrupt Preformed Fibrils, and Attenuate Aggregateâ€Induced Toxicity. Chemistry - A European Journal, 2020, 26, 16486-16496.	1.7	15
256	Metabolite assemblies: A surprising extension to the amyloid hypothesis. Current Opinion in Chemical Biology, 2021, 64, 154-164.	2.8	15
257	The Effect of Chemical Chaperones on the Assembly and Stability of HIV-1 Capsid Protein. PLoS ONE, 2013, 8, e60867.	1.1	15
258	Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials. Protein and Peptide Letters, 2020, 27, 688-697.	0.4	15
259	Mechanically functional amyloid fibrils in the adhesive of a marine invertebrate as revealed by Raman spectroscopy and atomic force microscopy. Archives of Histology and Cytology, 2009, 72, 199-207.	0.2	14
260	Controlling molecular self-assembly: from amyloid oligomerization and therapy to novel biomaterials and technological applications in nanomedicine. Nanomedicine, 2014, 9, 2433-2436.	1.7	14
261	Correction: The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chemical Society Reviews, 2014, 43, 7236-7236.	18.7	14
262	Inhibitory Effect of Naphthoquinone-Tryptophan Hybrid towards Aggregation of PAP f39 Semen Amyloid. Molecules, 2018, 23, 3279.	1.7	14
263	Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 27578-27583.	4.0	14
264	Unravelling the role of amino acid sequence order in the assembly and function of the amyloid-β core. Chemical Communications, 2019, 55, 8595-8598.	2.2	14
265	Induction of retinopathy by fibrillar oxalate assemblies. Communications Chemistry, 2020, 3, .	2.0	14
266	Inhibition of tau amyloid formation and disruption of its preformed fibrils by Naphthoquinone–Dopamine hybrid. FEBS Journal, 2021, 288, 4267-4290.	2.2	14
267	The Role of Bacillus thuringiensis Cry1C and Cry1E Separate Structural Domains in the Interaction with Spodoptera littoralis Gut Epithelial Cells. Journal of Biological Chemistry, 2004, 279, 15779-15786.	1.6	13
268	Adjustable Photoluminescence of Peptide Nanotubes Coatings. Journal of Nanoscience and Nanotechnology, 2011, 11, 9282-9286.	0.9	13
269	Evaluating Drosophila p53 as a Model System for Studying Cancer Mutations. Journal of Biological Chemistry, 2012, 287, 44330-44337.	1.6	13
270	Tryptophan–glucosamine conjugates modulate tau-derived PHF6 aggregation at low concentrations. Chemical Communications, 2019, 55, 14621-14624.	2.2	13

#	Article	IF	CITATIONS
271	Targeting the Early Step of Building Block Organization in Viral Capsid Assembly. ACS Chemical Biology, 2015, 10, 1785-1790.	1.6	12
272	Go with the Flow—Microfluidics Approaches for Amyloid Research. Chemistry - an Asian Journal, 2018, 13, 3437-3447.	1.7	12
273	Reevaluating the Microbial Infection Link to Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 73, 59-62.	1.2	12
274	Microbial Prions: Dawn of a New Era. Trends in Biochemical Sciences, 2021, 46, 391-405.	3.7	12
275	Piezoelectricity of the Transmembrane Protein <i>ba</i> ₃ Cytochrome <i>c</i> Oxidase. Advanced Functional Materials, 2021, 31, 2100884.	7.8	12
276	Selfâ€Assembled Peptide Nanoâ€Superstructure towards Enzyme Mimicking Hydrolysis. Angewandte Chemie, 2021, 133, 17301-17307.	1.6	12
277	Is Nitric Oxide Assuming a Janus-Face in The Central Nervous System?. Current Medicinal Chemistry, 2016, 23, 1625-1637.	1.2	12
278	Metal Organic Spin Transistor. Nano Letters, 2021, 21, 8657-8663.	4.5	12
279	Spacer driven morphological twist in Phe-Phe dipeptide conjugates. Tetrahedron, 2013, 69, 2004-2009.	1.0	11
280	Solventâ€Induced Selfâ€Assembly of Highly Hydrophobic Tetra†and Pentaphenylalanine Peptides. Israel Journal of Chemistry, 2015, 55, 756-762.	1.0	11
281	Recent Insight in Islet Amyloid Polypeptide Morphology, Structure, Membrane Interaction, and Toxicity in Type 2 Diabetes. Journal of Diabetes Research, 2016, 2016, 1-2.	1.0	11
282	The retinal toxicity profile towards assemblies of Amyloid-Î ² indicate the predominant pathophysiological activity of oligomeric species. Scientific Reports, 2020, 10, 20954.	1.6	11
283	A Twoâ€Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure. Angewandte Chemie - International Edition, 2017, 56, 3252-3255.	7.2	10
284	Active Immunization Against hIAPP Oligomers Ameliorates the Diabetes- Associated Phenotype in a Transgenic Mice Model. Scientific Reports, 2017, 7, 14031.	1.6	10
285	Solid-state packing dictates the unexpected solubility of aromatic peptides. Cell Reports Physical Science, 2021, 2, 100391.	2.8	10
286	ASL expression in ALDH1A1+ neurons in the substantia nigra metabolically contributes to neurodegenerative phenotype. Human Genetics, 2021, 140, 1471-1485.	1.8	10
287	Cytokinin Inhibits Fungal Development and Virulence by Targeting the Cytoskeleton and Cellular Trafficking. MBio, 2021, 12, e0306820.	1.8	10
288	Crystallization of Doc and the Phd–Doc toxin–antitoxin complex. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1034-1038.	0.7	9

#	Article	IF	CITATIONS
289	The Use of the Calcitonin Minimal Recognition Module for the Design of DOPA-Containing Fibrillar Assemblies. Nanomaterials, 2014, 4, 726-740.	1.9	9
290	Realâ€Time In‣itu Monitoring of a Tunable Pentapeptide Gel–Crystal Transition. Angewandte Chemie, 2019, 131, 16016-16022.	1.6	9
291	Arginine refolds, stabilizes, and restores function of mutant pVHL proteins in animal model of the VHL cancer syndrome. Oncogene, 2019, 38, 1038-1049.	2.6	9
292	Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics. , 0, , 313-329.		9
293	Structural Insights into the Folding Defects of Oncogenic pVHL Lead to Correction of Its Function In Vitro. PLoS ONE, 2013, 8, e66333.	1.1	9
294	A triclinic crystal structure of the carboxy-terminal domain of HIV-1 capsid protein with four molecules in the asymmetric unit reveals a novel packing interface. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 602-606.	0.7	8
295	Entropic Phase Transitions with Stable Twisted Intermediates of Bioâ€Inspired Selfâ€Assembly. Chemistry - A European Journal, 2016, 22, 15237-15241.	1.7	8
296	Microfluidics for real-time direct monitoring of self- and co-assembly biomolecular processes. Nanotechnology, 2019, 30, 102001.	1.3	8
297	Advances in Selfâ€Assembly of Metabolite Nanostructures: Physiology, Pathology and Nanotechnology. ChemNanoMat, 2022, 8, .	1.5	8
298	The molecular dynamics of assembly of the ubiquitous aortic medial amyloidal medin fragment. Journal of Molecular Graphics and Modelling, 2007, 25, 903-911.	1.3	7
299	Editorial [Hot Topic: The Structural Basis of Amyloid Formation (Guest Editors: Hermona Soreq and) Tj ETQq1 1	0.784314	rgBT /Overlo
300	Quantitative structure–activity relationship analysis of β-amyloid aggregation inhibitors. Journal of Computer-Aided Molecular Design, 2011, 25, 135-144.	1.3	7
301	α-Aminoisobutyric acid incorporation induces cell permeability and antiviral activity of HIV-1 major homology region fragments. Chemical Communications, 2015, 51, 12349-12352.	2.2	7
302	Distinct Effects of Oâ€GlcNAcylation and Phosphorylation of a Tauâ€Derived Amyloid Peptide on Aggregation of the Native Peptide. Chemistry - A European Journal, 2018, 24, 14039-14043.	1.7	7
303	Programmable Onâ€Chip Artificial Cell Producing Postâ€Translationally Modified Ubiquitinated Protein. Small, 2019, 15, 1901780.	5.2	7
304	Mechanisms of Metabolite Amyloid Formation: Computational Studies for Drug Design against Metabolic Disorders. ACS Medicinal Chemistry Letters, 2019, 10, 666-670.	1.3	7
305	Bioinspired Suprahelical Frameworks as Scaffolds for Artificial Photosynthesis. ACS Applied Materials & Interfaces, 2020, 12, 45192-45201.	4.0	7
306	Chemical Chaperones Modulate the Formation of Metabolite Assemblies. International Journal of Molecular Sciences, 2021, 22, 9172.	1.8	7

#	Article	IF	CITATIONS
307	Inhibitorâ€Mediated Structural Transition in a Minimal Amyloid Model. Angewandte Chemie - International Edition, 2022, 61, e202113845.	7.2	7
308	Inhibition of Respiratory RNA Viruses by a Composition of Ionophoric Polyphenols with Metal Ions. Pharmaceuticals, 2022, 15, 377.	1.7	7
309	From Green Bacteria to Human Dementia: A Novel Model for Discovering Amyloid Assembly Inhibitors. ACS Chemical Biology, 2006, 1, 417-419.	1.6	6
310	Nanostructure Design. Methods in Molecular Biology, 2008, 474, v-vii.	0.4	6
311	Modulating vectored non-covalent interactions for layered assembly with engineerable properties. Bio-Design and Manufacturing, 2022, 5, 529-539.	3.9	6
312	Hierarchical multi-step organization during viral capsid assembly. Colloids and Surfaces B: Biointerfaces, 2015, 136, 674-677.	2.5	5
313	Coassembly of Complementary Peptide Nucleic Acid into Crystalline Structures by Microfluidics. Small Methods, 2019, 3, 1900179.	4.6	5
314	Functional Coiled-Coil-like Assembly by Knob-into-Hole Packing of Single Heptad Repeat. ACS Nano, 2019, 13, 12630-12637.	7.3	5
315	Ultrashort Cell-Penetrating Peptides for Enhanced Sonophoresis-Mediated Transdermal Transport. ACS Applied Bio Materials, 2020, 3, 8395-8401.	2.3	5
316	Coâ€Assembly between Fmoc Diphenylalanine and Diphenylalanine within a 3D Fibrous Viscous Network Confers Atypical Curvature and Branching. Angewandte Chemie, 2020, 132, 23939-23947.	1.6	5
317	Peptide Self-Assembly Is Linked to Antibacterial, but Not Antifungal, Activity of Histatin 5 Derivatives. MSphere, 2020, 5, .	1.3	5
318	Inhibition of amyloid fibrillation of γD-crystallin model peptide by the cochineal Carmine. International Journal of Biological Macromolecules, 2021, 169, 342-351.	3.6	5
319	Metabolite medicine offers a path beyond lists of metabolites. Communications Chemistry, 2021, 4, .	2.0	5
320	RawHummus: an R Shiny app for automated raw data quality control in metabolomics. Bioinformatics, 2022, 38, 2072-2074.	1.8	5
321	Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant. Scientific Reports, 2015, 5, 17509.	1.6	4
322	Intrinsic Fluorescence of Metabolite Amyloids Allows Labelâ€Free Monitoring of Their Formation and Dynamics in Live Cells. Angewandte Chemie, 2018, 130, 12624-12627.	1.6	4
323	An amyloidogenic hexapeptide from the cataract-associated γD-crystallin is a model for the full-length protein and is inhibited by naphthoquinone-tryptophan hybrids. International Journal of Biological Macromolecules, 2020, 157, 424-433.	3.6	4
324	EDTA-mimicking amino acid–metal ion coordination for multifunctional packings. Journal of Materials Chemistry A, 2021, 9, 20385-20394.	5.2	4

#	Article	IF	CITATIONS
325	Total proteome turbidity assay for tracking global protein aggregation in the natural cellular environment. Journal of Biological Methods, 2017, 4, e69.	1.0	4
326	Photonic Crystals: Spectral Transition in Bioâ€Inspired Selfâ€Assembled Peptide Nucleic Acid Photonic Crystals (Adv. Mater. 11/2016). Advanced Materials, 2016, 28, 2276-2276.	11.1	3
327	Molecular Engineering of Somatostatin Analogue with Minimal Dipeptide Motif Induces the Formation of Functional Nanoparticles. ChemNanoMat, 2017, 3, 27-32.	1.5	3
328	Formation of Semiconducting Supramolecular Fullerene Aggregates in a Dipeptide Organogel. Advanced Materials Technologies, 2020, 5, 1900829.	3.0	3
329	Genetically Encoding Ultrastable Virus-like Particles Encapsulating Functional DNA Nanostructures in Living Bacteria. ACS Synthetic Biology, 2021, 10, 1798-1807.	1.9	3
330	A colored hydrophobic peptide film based on self-assembled two-fold topology. Journal of Colloid and Interface Science, 2021, 594, 326-333.	5.0	3
331	Computational and Experimental Protocols to Study Cyclo-dihistidine Self- and Co-assembly: Minimalistic Bio-assemblies with Enhanced Fluorescence and Drug Encapsulation Properties. Methods in Molecular Biology, 2022, 2405, 179-203.	0.4	3
332	Coâ€Assembly Induced Solidâ€State Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie, 2022, 134, .	1.6	3
333	Engineered Riboswitch Nanocarriers as a Possible Disease-Modifying Treatment for Metabolic Disorders. ACS Nano, 2022, 16, 11733-11741.	7.3	3
334	FtsZ Cytoskeletal Filaments as a Template for Metallic Nanowire Fabrication. Journal of Nanoscience and Nanotechnology, 2015, 15, 556-561.	0.9	2
335	Bioinspired Supramolecular Packing Enables High Thermoâ€ S ustainability. Angewandte Chemie, 2020, 132, 19199-19203.	1.6	2
336	Selfâ€Assembled Quadruplexâ€Inspired Peptide Nucleic Acid Tetramer for Artificial Photosynthesis. ChemPhotoChem, 2020, 4, 5154-5158.	1.5	2
337	Controlled Deposition of a Functional Piezoelectric Ultraâ€Aromatic Peptide Layer. Israel Journal of Chemistry, 2022, 62, .	1.0	2
338	Self-Assembly of Short Peptides for Nanotechnological Applications. , 2008, , 385-395.		1
339	Inside Cover: Self-Assembled Organic Nanostructures with Metallic-Like Stiffness (Angew. Chem. Int.) Tj ETQq1 I	1 0.784314 7.2	4 rgBT /Overl
340	High-throughput assay for temporal kinetic analysis of lytic coliphage activity. Analytical Biochemistry, 2014, 444, 22-24.	1.1	1
341	Amyloidogenic Properties of Peptides Derived from the VHL Tumor Suppressor Protein. ChemMedChem, 2021, 16, 3565-3568.	1.6	1
342	Preparation and Structural Characterization of Pre-fibrillar Assemblies of Amyloidogenic Proteins. , 2012, , 61-102.		1

#	Article	IF	CITATIONS
343	Computational and Experimental Characterization of dVHL Establish a Drosophila Model of VHL Syndrome. PLoS ONE, 2014, 9, e109864.	1.1	1
344	Effect of Stereochemistry and Hydrophobicity on the Selfâ€assembly of Pheâ€Pheâ€Nucleoside Conjugates. Macromolecular Chemistry and Physics, 0, , 2200011.	1.1	1
345	Nanoscience and nanotechnology as research and development tools for biology and medicine. Nanomedicine, 2006, 1, 135-137.	1.7	0
346	A Twoâ€Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure. Angewandte Chemie, 2017, 129, 3300-3303.	1.6	0
347	Bionanostructures: Bioinspired Flexible and Tough Layered Peptide Crystals (Adv. Mater. 5/2018). Advanced Materials, 2018, 30, 1870035.	11.1	0
348	Self-Assembly of Short Aromatic Peptides: From Amyloid Fibril Formation to Nanotechnology. , 2009, , 531-537.		0
349	Inhibitorâ€Mediated Structural Transition in a Minimal Amyloid Model. Angewandte Chemie, 0, , .	1.6	0
350	The contribution of individual residues of an aggregative hexapeptide derived from the human γD-crystallin to its amyloidogenicity. International Journal of Biological Macromolecules, 2022, 201, 182-192.	3.6	0