
JoaquÃ-n MartÃ-n-Calleja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/365599/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	M(Al,Ni)-TiO ₂ -Based Photoanode for Photoelectrochemical Solar Cells. Zeitschrift Fur Physikalische Chemie, 2018, 232, 559-577.	2.8	6
2	The impact of Pd on the light harvesting in hybrid organic-inorganic perovskite for solar cells. Nano Energy, 2017, 34, 141-154.	16.0	28
3	Preparation of Au nanoparticles in a non-polar medium: obtaining high-efficiency nanofluids for concentrating solar power. An experimental and theoretical perspective. Journal of Materials Chemistry A, 2017, 5, 12483-12497.	10.3	34
4	The Role of Surfactants in the Stability of NiO Nanofluids: An Experimental and DFT Study. ChemPhysChem, 2017, 18, 346-356.	2.1	8
5	Experimental and theoretical analysis of nanofluids based on high temperature-heat transfer fluid with enhanced thermal properties. EPJ Applied Physics, 2017, 78, 10901.	0.7	6
6	On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: An experimental and molecular dynamics study. Nano Energy, 2016, 27, 213-224.	16.0	66
7	Estimating the temperature of the active layer of dye sensitised solar cells by using a "second-order lumped parameter mathematical model― Solar Energy, 2016, 137, 80-89.	6.1	2
8	Micro-Raman Spectroscopy for the Determination of Local Temperature Increases in TiO2 Thin Films due to the Effect of Radiation. Applied Spectroscopy, 2016, 70, 1128-1136.	2.2	8
9	A Study of Overheating of Thermostatically Controlled TiO ₂ Thin Films by Using Raman Spectroscopy. ChemPhysChem, 2015, 16, 3949-3958.	2.1	0
10	Tm-doped TiO ₂ and Tm ₂ Ti ₂ O ₇ pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase. Beilstein Journal of Nanotechnology, 2015, 6, 605-616.	2.8	20
11	Study of thulium doping effect and enhancement of photocatalytic activity of rutile TiO2 nanoparticles. Materials Chemistry and Physics, 2015, 161, 175-184.	4.0	12
12	Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: structural and electronic characterization. Materials Research Bulletin, 2015, 70, 704-711.	5.2	28
13	New insights into organic–inorganic hybrid perovskite CH ₃ NH ₃ Pbl ₃ nanoparticles. An experimental and theoretical study of doping in Pb ²⁺ sites with Sn ²⁺ , Sr ²⁺ , Cd ²⁺ and Ca ²⁺ , Nanoscale, 2015. 7. 6216-6229.	5.6	216
14	Incorporation of Al-(hydr)oxide species onto the surface of TiO 2 nanoparticles: Improving the open-circuit voltage in dye-sensitized solar cells. Thin Solid Films, 2015, 578, 167-173.	1.8	5
15	TiO2and pyrochlore Tm2Ti2O7based semiconductor as a photoelectrode for dye-sensitized solar cells. Journal Physics D: Applied Physics, 2015, 48, 145102.	2.8	12
16	Surface thulium-doped TiO2 nanoparticles used as photoelectrodes in dye-sensitized solar cells: improving the open-circuit voltage. Applied Physics A: Materials Science and Processing, 2015, 121, 1261-1269.	2.3	6
17	Revealing the role of Pb ²⁺ in the stability of organic–inorganic hybrid perovskite CH ₃ NH ₃ Pb _{1â^'x} Cd _x I ₃ : an experimental and theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 23886-23896.	2.8	38
18	Introducing "UCA-FUKUI―software: reactivity-index calculations. Journal of Molecular Modeling, 2014, 20, 2492.	1.8	96

#	Article	IF	CITATIONS
19	Convergent study of Ru–ligand interactions through QTAIM, ELF, NBO molecular descriptors and TDDFT analysis of organometallic dyes. Molecular Physics, 2014, 112, 2063-2077.	1.7	9
20	Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2. Physical Chemistry Chemical Physics, 2014, 16, 3835.	2.8	111
21	Thermo-selective Tm _x Ti _{1â[°]x} O _{2â[°]x/2} nanoparticles: from Tm-doped anatase TiO ₂ to a rutile/pyrochlore Tm ₂ Ti ₂ O ₇ mixture. An experimental and theoretical study with a photocatalytic application. Nanoscale, 2014, 6, 12740-12757.	5.6	32
22	Electronic and Structural Properties of Highly Aluminum Ion Doped TiO ₂ Nanoparticles: A Combined Experimental and Theoretical Study. ChemPhysChem, 2014, 15, 2267-2280.	2.1	29
23	Cu(II)-Doped TiO ₂ Nanoparticles as Photoelectrode in Dye-Sensitized Solar Cells: Improvement of Open-Circuit Voltage and a Light Scattering Effect. Science of Advanced Materials, 2014, 6, 473-482.	0.7	8
24	Synthesis and Characterization of Gel-Derived, Highly Al-Doped TiO ₂ (Al <i>_x</i> Ti <sub>1–<i>x<td>;t;& t;/SUB</td><td>&gţ;O<sub< td=""></sub<></td></i></sub>	;t;& t;/SUB	&gţ;O <sub< td=""></sub<>
25	Advanced Materials, 2014, 6, 2134-2145. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chemical Physics Letters, 2013, 571, 49-53.	2.6	121
26	On-line thermal dependence study of the main solar cell electrical photoconversion parameters using low thermal emission lamps. Review of Scientific Instruments, 2012, 83, 063105.	1.3	5
27	Experimental analysis and computer simulation of a methodology for laser focusing in the solar cell characterization by laser beam induced current. Review of Scientific Instruments, 2012, 83, 043102.	1.3	4
28	Laser texturization to improve absorption and weld penetration of aluminum alloys. Journal of Laser Applications, 2012, 24, .	1.7	6
29	Multi-technique analysis of high quality HPHT diamond crystal. Journal of Crystal Growth, 2012, 353, 115-119.	1.5	13
30	Improving openâ€circuit voltage in DSSCs using Cuâ€doped TiO ₂ as a semiconductor. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 378-385.	1.8	54
31	Evaluation of decay photocurrent measurements in dye-sensitized solar cells: Application to laser beam-induced current technique. International Journal of Energy Research, 2012, 36, 193-203.	4.5	11
32	Direct Estimation of the Electron Diffusion Length in Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 1045-1050.	4.6	34
33	ZnO-based dye solar cell with pure ionic-liquid electrolyte and organic sensitizer: the relevance of the dye–oxide interaction in an ionic-liquid medium. Physical Chemistry Chemical Physics, 2011, 13, 207-213.	2.8	38
34	Pore Characterization Methodology by Means of Capillary Sorption Tests. Transport in Porous Media, 2011, 86, 333-351.	2.6	3
35	Synthesis and Raman spectroscopy study of TiO ₂ nanoparticles. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1970-1973.	0.8	13
36	Evaluation method for pore size distribution by using capillary liquid suction tests. Journal of Porous Materials, 2010, 17, 207-215.	2.6	4

#	Article	IF	CITATIONS
37	High resolution laser beam induced current images under trichromatic laser radiation: Approximation to the solar irradiation. Review of Scientific Instruments, 2010, 81, 035108.	1.3	8
38	Hydrogen passivation of boron acceptors in as-grown boron-doped CVD diamond epilayers. Diamond and Related Materials, 2010, 19, 904-907.	3.9	9
39	Improving photoresponse characterization of dye-sensitized solar cells: application to the laser beam-induced current technique. Measurement Science and Technology, 2010, 21, 075702.	2.6	1
40	The influence of chromatic components on extended depth of field imaging. Microscopy Research and Technique, 2009, 72, 403-410.	2.2	0
41	Solvent-free ZnO dye-sensitised solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1846-1852.	6.2	49
42	A methodology for improving laser beam induced current images of dye sensitized solar cells. Review of Scientific Instruments, 2009, 80, 063102.	1.3	15
43	Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 364-370.	3.9	75
44	Instrumental development attachable to high magnification microscopes for obtaining totally focalized images. Review of Scientific Instruments, 2008, 79, 113703.	1.3	0
45	Surface basicity of ceria-supported lanthana. Influence of the calcination temperature. Surface and Interface Analysis, 2006, 38, 229-233.	1.8	29
46	High resolution laser beam induced current focusing for photoactive surface characterization. Applied Surface Science, 2006, 253, 2179-2188.	6.1	4
47	Instrumental development for measuring sorption properties of porous materials. Review of Scientific Instruments, 2006, 77, 065107.	1.3	3
48	Study of various interventions in the façades of a historical building—Methodology proposal, chromatic and material analysis. Color Research and Application, 2005, 30, 382-390.	1.6	7
49	A Photochemical Reactor for the Study of Kinetics and Adsorption Phenomena. Journal of Chemical Education, 2004, 81, 537.	2.3	7
50	A versatile computer-controlled high-resolution LBIC system. Progress in Photovoltaics: Research and Applications, 2004, 12, 283-295.	8.1	23
51	Application of physical–chemical analytical techniques in the study of ancient ceramics. Analytica Chimica Acta, 2004, 502, 241-250.	5.4	17
52	Spectroscopic Study of Egyptian Blue Mixed with Other Pigments. Helvetica Chimica Acta, 2003, 86, 29-49.	1.6	22
53	Spectroscopic analysis of roman wall paintings from Casa del Mitreo in Emerita Augusta, Mérida, Spain. Talanta, 2003, 59, 1117-1139.	5.5	43
54	A precision method for laser focusing on laser beam induced current experiments. Review of Scientific Instruments, 2002, 73, 3895-3900.	1.3	16

JoaquÃn MartÃn-Calleja

#	Article	IF	CITATIONS
55	Study on Shape Characterization of Crystalline Particles:  Analysis of the Standard Deviation of the Angular Projection Function. Journal of Physical Chemistry A, 2002, 106, 6334-6338.	2.5	2
56	Theoretical study of the morphologically originated noise associated with the transmittance of a precipitation system. Computers & Chemistry, 2002, 26, 131-140.	1.2	0
57	Experimental study of precipitating systems; computerised analysis of the optical transmittance and associated noise. Computers & Chemistry, 2001, 25, 447-457.	1.2	1
58	Study of precipitant systems by computerised simulation. Influence of optical elements on the noise associated with the transmittance. Computers & Chemistry, 2001, 25, 499-508.	1.2	0
59	Roman wall paintings characterization from Cripta del Museo and Alcazaba in Mérida (Spain): chromatic, energy dispersive X-ray flurescence spectroscopic, X-ray diffraction and Fourier transform infrared spectroscopic analysis. Analytica Chimica Acta, 2001, 434, 331-345.	5.4	59
60	Evolution of Optical Transmittance in Precipitants Solutions. A Computer Simulation. Crystal Research and Technology, 1992, 27, 799-808.	1.3	4
61	The Detection of Salting-out. A Comparative Study. Crystal Research and Technology, 1991, 26, 35-42.	1.3	7
62	Raman intensities of cyclohexane in the gas phase. Journal of Raman Spectroscopy, 1989, 20, 291-296.	2.5	3
63	Pure rotational Raman spectra of deuteriated ethylenes: Molecular polarizability parameters. Journal of Raman Spectroscopy, 1986, 17, 39-43.	2.5	4
64	Raman intensities of propane in the gas phase. Journal of Raman Spectroscopy, 1985, 16, 139-142.	2.5	10
65	Raman intensities of ethane and deuterated derivatives. Journal of Chemical Physics, 1984, 80, 4610-4619.	3.0	76