
Raisa Apostolova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3655772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of electrolytic cobalt sulfide Co9S8 as an electrode material in lithium accumulator prototypes. Russian Journal of Electrochemistry, 2009, 45, 311-319.	0.3	55
2	Electrodeposition of molybdenum oxide and its structural characteristics. Russian Journal of Applied Chemistry, 2006, 79, 1438-1442.	0.1	12
3	Electrolytic iron sulfides for thin-layer lithium-ion batteries. Russian Journal of Applied Chemistry, 2009, 82, 1939-1943.	0.1	11
4	Electrolytic nickel sulfide in a model electrochemical capacitor. Russian Journal of Applied Chemistry, 2012, 85, 612-615.	0.1	11
5	Study of lithium insertion into electrochemically synthesized sodium–vanadium oxide. Journal of Power Sources, 2001, 97-98, 486-490.	4.0	8
6	Title is missing!. Russian Journal of Electrochemistry, 2001, 37, 1041-1049.	0.3	7
7	Electrolytic Nickel Oxides in the Electrodes of Lithium Secondary Batteries. Russian Journal of Electrochemistry, 2004, 40, 36-43.	0.3	7
8	Synthesis and investigation of electrolytic sodium-vanadium oxide compounds for cathodes of lithium batteries: The production of compounds with stable initial characteristics. Russian Journal of Electrochemistry, 2000, 36, 36-42.	0.3	6
9	Chronovoltammetry of electrolytic molybdenum oxides at the electrochemical intercalation/deintercalation of lithium ions. Journal of Solid State Electrochemistry, 2003, 8, 20-22.	1.2	5
10	Electrolytic binary Co and Ni sulfides in electrodes of lithium and lithium-ion low—temperature batteries. Russian Journal of Electrochemistry, 2010, 46, 100-106.	0.3	5
11	Enhancing the efficiency of using electroplated iron and cobalt sulfides with a sublayer of NiC composite in a lithium battery. Russian Journal of Applied Chemistry, 2015, 88, 1637-1642.	0.1	5
12	Thin-Layer Electrolytic Molybdenum Oxydisulfides for Cathodes of Lithium Batteries. Russian Journal of Electrochemistry, 2005, 41, 1305-1315.	0.3	4
13	Surface morphology of electrolytic deposits of vanadium, cobalt, and manganese oxides. Russian Journal of Applied Chemistry, 2006, 79, 1443-1446.	0.1	4
14	Optimization of iron sulfides usage in electrolytic composites with graphites for lithium-ion batteries. Surface Engineering and Applied Electrochemistry, 2011, 47, 465-470.	0.3	4
15	Thin-layer electrolytic nickel hydroxide Ni(OH)2 in an electrochemical capacitor. Surface Engineering and Applied Electrochemistry, 2012, 48, 170-174.	0.3	4
16	Features of electrochemical transformation of LiMn2O4 composition with Norit carbon filler in a model lithium accumulator. Surface Engineering and Applied Electrochemistry, 2015, 51, 296-303.	0.3	4
17	Electrolytic Deposition of Molybdenum Oxide from Aqueous Solutions at Room Temperature. Russian Journal of Applied Chemistry, 2004, 77, 71-73.	0.1	3
18	Electrolytic composites of iron sulfides with graphite in a prototype lithium battery. Russian Journal of Applied Chemistry, 2011, 84, 607-614.	0.1	3

RAISA APOSTOLOVA

#	Article	IF	CITATIONS
19	Electrolytic Co, Ni-bimetalsulfide composites with hydrophilizated multi-wall carbon nanotubes in a prototype lithium accumulator. Surface Engineering and Applied Electrochemistry, 2014, 50, 18-27.	0.3	3
20	Electrolytic Preparation of Vanadium(V) Oxide from Saturated Solutions of Ammonium Metavanadate. Russian Journal of Applied Chemistry, 2001, 74, 1474-1478.	0.1	2
21	Titanium Dioxide Synthesized by Emulsion Method as a Material for Lithium Current Sources. Russian Journal of Applied Chemistry, 2002, 75, 417-421.	0.1	2
22	Electrolytic Synthesis of Binary Oxide Systems Based on Manganese(II) Oxide. Russian Journal of Applied Chemistry, 2002, 75, 213-218.	0.1	2
23	Electrolytic Iron Sulfide Products in Lithium Batteries. Russian Journal of Electrochemistry, 2004, 40, 736-742.	0.3	2
24	Anodic processes occurring upon V2O5 electrodeposition. Russian Journal of Applied Chemistry, 2007, 80, 71-73.	0.1	2
25	Conversion of LiMn2â^'x Co x O4 spinel on the basis of electrolytically Co-deposited Mn,Co-oxide precursors in a lithium battery. Russian Journal of Applied Chemistry, 2014, 87, 1260-1267.	0.1	2
26	Thin-Layer Electrochemically Produced SiO2/Ni Composites in a Prototyping Lithium-Ion Battery. Surface Engineering and Applied Electrochemistry, 2018, 54, 420-426.	0.3	2
27	Electrochemical Properties of Electrodes Based on Đœn3O4, Mn2O3 in Non-Aqueous Electrolytes with Magnesium or Lithium Perchlorate. ECS Transactions, 2018, 87, 133-144.	0.3	2
28	Electrochemical Intercalation of Lithium Ions into Electrolytic Vanadium Pentoxide. Russian Journal of Electrochemistry, 2002, 38, 788-790.	0.3	1
29	Joint Electrolytic Deposition of Vanadium and Manganese Oxides. Russian Journal of Applied Chemistry, 2002, 75, 552-557.	0.1	1
30	Electrolytic Deposition of Cobalt(III) Oxide in the Presence of Nickel(II) and Chromium(III) Ions. Russian Journal of Applied Chemistry, 2002, 75, 905-910.	0.1	1
31	Electrolytic Synthesis of Complex Oxide Systems by Cathodic Deposition of Molybdenum Oxide from Aqueous Solutions in the Presence of Nickel(II) and Thiosulfate Ions. Russian Journal of Applied Chemistry, 2003, 76, 1438-1443.	0.1	1
32	Electrolytic Co3O4 for thin-layer anodes of lithium-ion batteries. Russian Journal of Electrochemistry, 2006, 42, 173-182.	0.3	1
33	Analysis of degradation of electrolytic Fe, Co, Ni sulfides and their graphitized analogs in lithium battery using impedance spectroscopy. Russian Journal of Electrochemistry, 2013, 49, 665-675.	0.3	1
34	Conversion efficiency of γ/β-MnO2 in composites with natural graphite and carbon nanotubes in a prototype lithium battery. Russian Journal of Applied Chemistry, 2013, 86, 1847-1853.	0.1	1
35	Investigation of \hat{l}^2/\hat{l}^3 -MnO2 in composite electrodes with carbon nanotubes in a redox reaction with lithium in a model accumulator. Surface Engineering and Applied Electrochemistry, 2014, 50, 125-134.	0.3	1
36	V2O5 Electrosynthesized in Metavanadate Solutions: The Physicochemical and Structural Properties and Specifics of Its Electrochemical Transformation in Redox Reactions with Lithium. Surface Engineering and Applied Electrochemistry, 2020, 56, 216-221.	0.3	1

#	Article	IF	CITATIONS
37	K,Na–Vanadium Oxide Compounds for Lithium-Ion Batteries: Synthesis and Electrochemical Performance in a Redox Reaction with Lithium. Surface Engineering and Applied Electrochemistry, 2021, 57, 644-650.	0.3	1
38	Title is missing!. Russian Journal of Applied Chemistry, 2001, 74, 1470-1473.	0.1	0
39	Anodic Deposition of Vanadium(V) Oxide from Solutions in the Presence of Nickel Ions. Russian Journal of Applied Chemistry, 2002, 75, 1968-1971.	0.1	0
40	Joint electrolytic deposition of vanadium(V) and chromium(III) oxides from aqueous sulfate solutions. Russian Journal of Applied Chemistry, 2004, 77, 1777-1780.	0.1	0
41	Electrolytic iron sulfides in prototype lithium batteries with gel electrolytes based on poly(vinyliden) Tj ETQq1 1 0	.784314 r 0.1	gBT /Overlo
42	Effect of the alloying component MnO2 on the type of V2O5 electrocrystallization. Russian Journal of Applied Chemistry, 2008, 81, 1193-1197.	0.1	0
43	Lithium intercalation with phase transitions in model systems of electrode materials for lithium power sources. Russian Journal of Electrochemistry, 2009, 45, 554-557.	0.3	0
44	Electrolytic binary metal-oxide compounds: Fundamental peculiarities of their structure and formation. Surface Engineering and Applied Electrochemistry, 2013, 49, 368-372.	0.3	0
45	Electrolytic synthesis of FeS2 for thin-layer lithium battery. Russian Journal of Applied Chemistry, 2014, 87, 930-936.	0.1	0
46	LiMn2O4–Norit at a Low Temperature in Comparison with LiMn2O4—MWCNT and LiMn2O4–EUZâ€"Đœ Graphite in the Prototype Li-Battery. Surface Engineering and Applied Electrochemistry, 2020, 56, 533-540.	0.3	0