Todd S Braver

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3655623/todd-s-braver-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

182 179 32,322 75 h-index g-index citations papers 36,168 216 6.1 7.53 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
182	We need to be braver about the generalizability crisis Behavioral and Brain Sciences, 2022, 45, e6	0.9	
181	Incorporating ecological momentary assessment into multimethod investigations of cognitive aging: Promise and practical considerations <i>Psychology and Aging</i> , 2022 , 37, 84-96	3.6	1
180	Domain-general cognitive motivation: Evidence from economic decision-making - Final Registered Report <i>Cognitive Research: Principles and Implications</i> , 2022 , 7, 23	2.7	O
179	The Dual Mechanisms of Cognitive Control dataset, a theoretically-guided within-subject task fMRI battery <i>Scientific Data</i> , 2022 , 9, 114	8.2	0
178	A College First-Year Mindfulness Seminar to Enhance Psychological Well-Being and Cognitive Function. <i>Journal of Student Affairs Research and Practice</i> , 2021 , 58, 437-451	0.7	4
177	Enhancing task fMRI preprocessing via individualized model-based filtering of intrinsic activity dynamics <i>NeuroImage</i> , 2021 , 247, 118836	7.9	0
176	Aversive motivation and cognitive control <i>Neuroscience and Biobehavioral Reviews</i> , 2021 , 133, 104493	9	5
175	The role of neural load effects in predicting individual differences in working memory function. <i>NeuroImage</i> , 2021 , 245, 118656	7.9	0
174	Investigating mindfulness influences on cognitive function: On the promise and potential of converging research strategies. <i>Psychonomic Bulletin and Review</i> , 2021 , 1	4.1	1
173	Dorsal Anterior Cingulate Cortex Encodes the Integrated Incentive Motivational Value of Cognitive Task Performance. <i>Journal of Neuroscience</i> , 2021 , 41, 3707-3720	6.6	5
172	A Representational Similarity Analysis of Cognitive Control during Color-Word Stroop. <i>Journal of Neuroscience</i> , 2021 , 41, 7388-7402	6.6	4
171	Measuring the Subjective Cost of Listening Effort Using a Discounting Task. <i>Journal of Speech, Language, and Hearing Research</i> , 2021 , 64, 337-347	2.8	5
170	Domain-general cognitive motivation: evidence from economic decision-making. <i>Cognitive Research: Principles and Implications</i> , 2021 , 6, 4	2.7	4
169	Neural Coding of Cognitive Control: The Representational Similarity Analysis Approach. <i>Trends in Cognitive Sciences</i> , 2021 , 25, 622-638	14	13
168	The Dual Mechanisms of Cognitive Control Project. Journal of Cognitive Neuroscience, 2021, 1-26	3.1	7
167	Frontoparietal pattern similarity analyses of cognitive control in monozygotic twins. <i>NeuroImage</i> , 2021 , 241, 118415	7.9	1
166	Predicting Individual Preferences in Mindfulness Techniques Using Personality Traits. <i>Frontiers in Psychology</i> , 2020 , 11, 1163	3.4	5

(2018-2020)

165	Towards an Individual Differences Perspective in Mindfulness Training Research: Theoretical and Empirical Considerations. <i>Frontiers in Psychology</i> , 2020 , 11, 818	3.4	9	
164	Exploring brain-behavior relationships in the N-back task. <i>NeuroImage</i> , 2020 , 212, 116683	7.9	20	
163	Scalable surrogate deconvolution for identification of partially-observable systems and brain modeling. <i>Journal of Neural Engineering</i> , 2020 , 17, 046025	5	2	
162	Estimation and validation of individualized dynamic brain models with resting state fMRI. <i>NeuroImage</i> , 2020 , 221, 117046	7.9	7	
161	Pattern Similarity Analyses of FrontoParietal Task Coding: Individual Variation and Genetic Influences. <i>Cerebral Cortex</i> , 2020 , 30, 3167-3183	5.1	9	
160	Examining delay of gratification in healthy aging. <i>Behavioural Processes</i> , 2020 , 176, 104125	1.6	1	
159	Effort in daily life: relationships between experimental tasks and daily experience. <i>Motivation Science</i> , 2020 , 6, 303-308	3.4	2	
158	Dissociable Effects of Monetary, Liquid, and Social Incentives on Motivation and Cognitive Control. <i>Frontiers in Psychology</i> , 2020 , 11, 2212	3.4	7	
157	Neuroimaging of individual differences: A latent variable modeling perspective. <i>Neuroscience and Biobehavioral Reviews</i> , 2019 , 98, 29-46	9	27	
156	The Subjective Value of Cognitive Effort is Encoded by a Domain-General Valuation Network. <i>Journal of Neuroscience</i> , 2019 , 39, 3934-3947	6.6	41	
155	Age-Related Differences in Motivational Integration and Cognitive Control. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2019 , 19, 692-714	3.5	12	
154	Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. <i>NeuroImage</i> , 2019 , 202, 116062	7.9	18	
153	Reward improves response inhibition by enhancing attentional capture. <i>Social Cognitive and Affective Neuroscience</i> , 2019 , 14, 35-45	4	5	
152	Intertemporal Decision-Making Involves Prefrontal Control Mechanisms Associated with Working Memory. <i>Cerebral Cortex</i> , 2018 , 28, 1105-1116	5.1	23	
151	A role for proactive control in rapid instructed task learning. Acta Psychologica, 2018, 184, 20-30	1.7	9	
150	Interactions of Motivation and Cognitive Control. Current Opinion in Behavioral Sciences, 2018, 19, 83-9	90 ₄	67	
149	Geometric classification of brain network dynamics via conic derivative discriminants. <i>Journal of Neuroscience Methods</i> , 2018 , 308, 88-105	3	O	
148	Age-related changes in neural mechanisms of prospective memory. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2018 , 18, 982-999	3.5	13	

147	Context Processing and Cognitive Control 2017 , 143-166		13
146	The task novelty paradox: Flexible control of inflexible neural pathways during rapid instructed task learning. <i>Neuroscience and Biobehavioral Reviews</i> , 2017 , 81, 4-15	9	39
145	The Role of Psychometrics in Individual Differences Research in Cognition: A Case Study of the AX-CPT. <i>Frontiers in Psychology</i> , 2017 , 8, 1482	3.4	41
144	Proactive control of irrelevant task rules during cued task switching. <i>Psychological Research</i> , 2016 , 80, 860-76	2.5	12
143	The Behavioral Relevance of Task Information in Human Prefrontal Cortex. <i>Cerebral Cortex</i> , 2016 , 26, 2497-505	5.1	43
142	Reward Motivation Enhances Task Coding in Frontoparietal Cortex. <i>Cerebral Cortex</i> , 2016 , 26, 1647-59	5.1	72
141	Dopamine Does Double Duty in Motivating Cognitive Effort. <i>Neuron</i> , 2016 , 89, 695-710	13.9	145
140	Dissociating proactive and reactive control in the Stroop task. <i>Memory and Cognition</i> , 2016 , 44, 778-88	2.2	53
139	Inducing Proactive Control Shifts in the AX-CPT. Frontiers in Psychology, 2016, 7, 1822	3.4	50
138	Reward favors the prepared: Incentive and task-informative cues interact to enhance attentional control. <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 2016 , 42, 52-66	2.6	43
137	Reflexive activation of newly instructed stimulus-response rules: evidence from lateralized readiness potentials in no-go trials. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2015 , 15, 365-73	3.5	24
136	Cognitive effort: A neuroeconomic approach. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2015 , 15, 395-415	3.5	243
135	Lateral Prefrontal Cortex Contributes to Fluid Intelligence Through Multinetwork Connectivity. Brain Connectivity, 2015 , 5, 497-504	2.7	56
134	The power of instructions: Proactive configuration of stimulus-response translation. <i>Journal of Experimental Psychology: Learning Memory and Cognition</i> , 2015 , 41, 768-86	2.2	64
133	Motivation and cognitive control: from behavior to neural mechanism. <i>Annual Review of Psychology</i> , 2015 , 66, 83-113	26.1	445
132	Remembering to prepare: The benefits (and costs) of high working memory capacity. <i>Journal of Experimental Psychology: Learning Memory and Cognition</i> , 2015 , 41, 1764-77	2.2	48
131	Humans Integrate Monetary and Liquid Incentives to Motivate Cognitive Task Performance. <i>Frontiers in Psychology</i> , 2015 , 6, 2037	3.4	22
130	Dissociable influences of reward motivation and positive emotion on cognitive control. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2014 , 14, 509-29	3.5	112

129	Intrinsic and task-evoked network architectures of the human brain. <i>Neuron</i> , 2014 , 83, 238-51	13.9	933
128	Mechanisms of motivation-cognition interaction: challenges and opportunities. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2014 , 14, 443-72	3.5	199
127	Dopamine release in nucleus accumbens during rewarded task switching measured by [IIIC]raclopride. <i>NeuroImage</i> , 2014 , 99, 357-64	7.9	26
126	Neural mechanisms of time-based prospective memory: evidence for transient monitoring. <i>PLoS ONE</i> , 2014 , 9, e92123	3.7	30
125	Motivation and Cognitive Control: Going Beyond Monetary Incentives 2014 , 137-162		7
124	Multi-task connectivity reveals flexible hubs for adaptive task control. <i>Nature Neuroscience</i> , 2013 , 16, 1348-55	25.5	982
123	Impulsivity and self-control during intertemporal decision making linked to the neural dynamics of reward value representation. <i>Journal of Neuroscience</i> , 2013 , 33, 344-57	6.6	88
122	Searchlight analysis: promise, pitfalls, and potential. <i>NeuroImage</i> , 2013 , 78, 261-9	7.9	133
121	Dissociable neural routes to successful prospective memory. <i>Psychological Science</i> , 2013 , 24, 1791-800	7.9	74
120	The economics of cognitive effort. <i>Behavioral and Brain Sciences</i> , 2013 , 36, 704-5; discussion 707-26	0.9	9
119	MVPA Permutation Schemes: Permutation Testing in the Land of Cross-Validation 2013,		11
118	What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. <i>PLoS ONE</i> , 2013 , 8, e68210	3.7	208
117	Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. <i>Frontiers in Psychology</i> , 2013 , 4, 15	3.4	122
116	The variable nature of cognitive control: a dual mechanisms framework. <i>Trends in Cognitive Sciences</i> , 2012 , 16, 106-13	14	1295
115	Global connectivity of prefrontal cortex predicts cognitive control and intelligence. <i>Journal of Neuroscience</i> , 2012 , 32, 8988-99	6.6	424
114	Local and global effects of motivation on cognitive control. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2012 , 12, 692-718	3.5	4
113	The function and organization of lateral prefrontal cortex: a test of competing hypotheses. <i>PLoS ONE</i> , 2012 , 7, e30284	3.7	50
112	When planning results in loss of control: intention-based reflexivity and working-memory. <i>Frontiers in Human Neuroscience</i> , 2012 , 6, 104	3.3	51

111	Strategic insight and age-related goal-neglect influence risky decision-making. <i>Frontiers in Neuroscience</i> , 2012 , 6, 68	5.1	4
110	Integration in working memory: a magnetic stimulation study on the role of left anterior prefrontal cortex. <i>PLoS ONE</i> , 2012 , 7, e43731	3.7	9
109	Looking Outside the Searchlight. <i>Lecture Notes in Computer Science</i> , 2012 , 26-33	0.9	3
108	Impaired error-likelihood prediction in medial prefrontal cortex in schizophrenia. <i>NeuroImage</i> , 2011 , 54, 1506-17	7.9	25
107	Domain independence and stability in young and older adults discounting of delayed rewards. <i>Behavioural Processes</i> , 2011 , 87, 253-9	1.6	105
106	Monetary Incentives Improve Performance, Sometimes: Speed and Accuracy Matter, and so Might Preparation. <i>Frontiers in Psychology</i> , 2011 , 2, 325	3.4	8
105	Rapid transfer of abstract rules to novel contexts in human lateral prefrontal cortex. <i>Frontiers in Human Neuroscience</i> , 2011 , 5, 142	3.3	65
104	Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span. <i>Journal of Experimental Psychology: General</i> , 2011 , 140, 674-692	4.7	161
103	Positive affect versus reward: emotional and motivational influences on cognitive control. <i>Frontiers in Psychology</i> , 2011 , 2, 279	3.4	130
102	Neural circuitry of emotional and cognitive conflict revealed through facial expressions. <i>PLoS ONE</i> , 2011 , 6, e17635	3.7	25
101	Revealing list-level control in the Stroop task by uncovering its benefits and a cost. <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 2011 , 37, 1595-606	2.6	51
100	Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. <i>Frontiers in Human Neuroscience</i> , 2010 , 4, 32	3.3	89
99	Primary and secondary rewards differentially modulate neural activity dynamics during working memory. <i>PLoS ONE</i> , 2010 , 5, e9251	3.7	94
98	Neural mechanisms of interference control in working memory: effects of interference expectancy and fluid intelligence. <i>PLoS ONE</i> , 2010 , 5, e12861	3.7	81
97	Enhancement of cognitive control by approach and avoidance motivational states. <i>Cognition and Emotion</i> , 2010 , 24, 338-356	2.3	66
96	Age-related shifts in brain activity dynamics during task switching. <i>Cerebral Cortex</i> , 2010 , 20, 1420-31	5.1	93
95	Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 8871-6	11.5	217
94	Motivated cognitive control: reward incentives modulate preparatory neural activity during task-switching. <i>Journal of Neuroscience</i> , 2010 , 30, 10294-305	6.6	84

(2008-2010)

93	Exploring emotional and cognitive conflict using speeded voluntary facial expressions. <i>Emotion</i> , 2010 , 10, 842-54	4.1	7
92	Vive les differences! Individual variation in neural mechanisms of executive control. <i>Current Opinion in Neurobiology</i> , 2010 , 20, 242-50	7.6	90
91	Anticipating the consequences of action: an fMRI study of intention-based task preparation. <i>Psychophysiology</i> , 2010 , 47, 1019-27	4.1	12
90	Individual Differences in Cognition from a Neurophysiological Perspective: The Commentaries. <i>Plenum Series on Human Exceptionality</i> , 2010 , 169-178		1
89	Cognitive Neuroscience Approaches to Individual Differences in Working Memory and Executive Control: Conceptual and Methodological Issues. <i>Plenum Series on Human Exceptionality</i> , 2010 , 87-107		54
88	Flexible neural mechanisms of cognitive control within human prefrontal cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7351-6	11.5	412
87	CNTRICS final task selection: executive control. <i>Schizophrenia Bulletin</i> , 2009 , 35, 115-35	1.3	106
86	Distinct neural circuits support transient and sustained processes in prospective memory and working memory. <i>Cerebral Cortex</i> , 2009 , 19, 1208-21	5.1	139
85	Attention, intention, and strategy in preparatory control. <i>Neuropsychologia</i> , 2009 , 47, 1670-85	3.2	32
84	Are people really more patient than other animals? Evidence from human discounting of real liquid rewards. <i>Psychonomic Bulletin and Review</i> , 2009 , 16, 1071-5	4.1	87
83	Separating event-related BOLD components within trials: the partial-trial design revisited. <i>NeuroImage</i> , 2009 , 47, 501-13	7.9	16
82	Intellect as distinct from Openness: differences revealed by fMRI of working memory. <i>Journal of Personality and Social Psychology</i> , 2009 , 97, 883-92	6.5	180
81	BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. <i>PLoS ONE</i> , 2009 , 4, e4257	3.7	221
80	A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex. <i>Brain Research</i> , 2008 , 1202, 99-108	3.7	78
79	Executive functioning component mechanisms and schizophrenia. <i>Biological Psychiatry</i> , 2008 , 64, 26-33	7.9	129
78	Age-related changes in neural activity during performance matched working memory manipulation. <i>NeuroImage</i> , 2008 , 42, 1577-86	7.9	40
77	Cognitive control, goal maintenance, and prefrontal function in healthy aging. <i>Cerebral Cortex</i> , 2008 , 18, 1010-28	5.1	288
76	How does reward expectation influence cognition in the human brain?. <i>Journal of Cognitive Neuroscience</i> , 2008 , 20, 1980-92	3.1	34

75	Preparation for integration: the role of anterior prefrontal cortex in working memory. <i>NeuroReport</i> , 2008 , 19, 15-9	1.7	22
74	Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. <i>Psychological Science</i> , 2008 , 19, 904-11	7.9	337
73	Motivational influences on cognitive control: behavior, brain activation, and individual differences. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2008 , 8, 99-112	3.5	281
7 2	Explaining the Many Varieties of Working Memory Variation: Dual Mechanisms of Cognitive Control 2008 , 76-106		63
71	A computational model of fractionated conflict-control mechanisms in task-switching. <i>Cognitive Psychology</i> , 2007 , 55, 37-85	3.1	141
70	Medial frontal cortex function: an introduction and overview. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2007 , 7, 261-5	3.5	33
69	Risk prediction and aversion by anterior cingulate cortex. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2007 , 7, 266-77	3.5	124
68	Event perception: a mind-brain perspective. <i>Psychological Bulletin</i> , 2007 , 133, 273-93	19.1	571
67	A computational model of event segmentation from perceptual prediction. <i>Cognitive Science</i> , 2007 , 31, 613-43	2.2	82
66	Functional specializations in lateral prefrontal cortex associated with the integration and segregation of information in working memory. <i>Cerebral Cortex</i> , 2007 , 17, 993-1006	5.1	70
65	A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. <i>Neurocomputing</i> , 2006 , 69, 1322-1326	5.4	147
64	Computational and neural mechanisms of task switching. <i>Neurocomputing</i> , 2006 , 69, 1332-1336	5.4	24
63	A direct comparison of anterior prefrontal cortex involvement in episodic retrieval and integration. <i>Cerebral Cortex</i> , 2006 , 16, 519-28	5.1	61
62	Individual differences in amygdala activity predict response speed during working memory. <i>Journal of Neuroscience</i> , 2006 , 26, 10120-8	6.6	82
61	Effects of environmental support and strategy training on older adultsUse of context. <i>Psychology and Aging</i> , 2006 , 21, 499-509	3.6	91
60	Accounting for cognitive aging: context processing, inhibition or processing speed?. <i>Aging, Neuropsychology, and Cognition</i> , 2006 , 13, 588-610	2.1	98
59	The effect of age on rule-based category learning. Aging, Neuropsychology, and Cognition, 2006, 13, 411	-34	17
58	Extracting core components of cognitive control. <i>Trends in Cognitive Sciences</i> , 2006 , 10, 529-32	14	61

(2003-2006)

57	Exactly how are fluid intelligence, working memory, and executive function related? Cognitive neuroscience approaches to investigating the mechanisms of fluid cognition. <i>Behavioral and Brain Sciences</i> , 2006 , 29, 128-129	0.9	11
56	Prefrontal brain activity predicts temporally extended decision-making behavior. <i>Journal of the Experimental Analysis of Behavior</i> , 2005 , 84, 537-54	2.1	24
55	Context processing and context maintenance in healthy aging and early stage dementia of the Alzheimer type. <i>Psychology and Aging</i> , 2005 , 20, 33-46	3.6	135
54	Affective personality differences in neural processing efficiency confirmed using fMRI. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2005 , 5, 182-90	3.5	148
53	Sustained neural activity associated with cognitive control during temporally extended decision making. <i>Cognitive Brain Research</i> , 2005 , 23, 71-84		39
52	Cognitive Control and Schizophrenia: Psychological and Neural Mechanisms 2005 , 122-159		5
51	Prefrontal cortex and flexible cognitive control: rules without symbols. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 7338-43	11.5	302
50	Learned predictions of error likelihood in the anterior cingulate cortex. <i>Science</i> , 2005 , 307, 1118-21	33.3	687
49	Dopaminergic modulation of response inhibition: an fMRI study. Cognitive Brain Research, 2004, 20, 438	-438	
48	Opiate addicts lack error-dependent activation of rostral anterior cingulate. <i>Biological Psychiatry</i> , 2004 , 55, 531-7	7.9	201
47	Cognitive-pharmacologic functional magnetic resonance imaging in tourette syndrome: a pilot study. <i>Biological Psychiatry</i> , 2004 , 55, 916-25	7.9	19
46	Dopaminergic modulation of response inhibition: an fMRI study. <i>Cognitive Brain Research</i> , 2004 , 20, 438	-48	65
45	Item- and task-level processes in the left inferior prefrontal cortex: positive and negative correlates of encoding. <i>NeuroImage</i> , 2004 , 21, 1472-83	7.9	51
44	Context-processing deficits in schizophrenia: Diagnostic specificity, 4-week course, and relationships to clinical symptoms <i>Journal of Abnormal Psychology</i> , 2003 , 112, 132-143	7	230
43	Where the rubber meets the road: The importance of implementation. <i>Behavioral and Brain Sciences</i> , 2003 , 26, 83-84	0.9	
42	Strategy-dependent changes in memory: effects on behavior and brain activity. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2003 , 3, 155-67	3.5	54
41	Neural mechanisms of general fluid intelligence. <i>Nature Neuroscience</i> , 2003 , 6, 316-22	25.5	814
40	Reliability of functional localization using fMRI. <i>NeuroImage</i> , 2003 , 20, 1561-77	7.9	57

39	Principles of pleasure prediction: specifying the neural dynamics of human reward learning. <i>Neuron</i> , 2003 , 38, 150-2	13.9	14
38	Neural mechanisms of transient and sustained cognitive control during task switching. <i>Neuron</i> , 2003 , 39, 713-26	13.9	636
37	Context-processing deficits in schizophrenia: diagnostic specificity, 4-week course, and relationships to clinical symptoms. <i>Journal of Abnormal Psychology</i> , 2003 , 112, 132-43	7	105
36	Cognitive control in altruism and self-control: A social cognitive neuroscience perspective. <i>Behavioral and Brain Sciences</i> , 2002 , 25, 260-260	0.9	
35	Computational perspectives on dopamine function in prefrontal cortex. <i>Current Opinion in Neurobiology</i> , 2002 , 12, 223-9	7.6	293
34	A theory of cognitive control, aging cognition, and neuromodulation. <i>Neuroscience and Biobehavioral Reviews</i> , 2002 , 26, 809-17	9	435
33	Mechanisms underlying dependencies of performance on stimulus history in a two-alternative forced-choice task. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2002 , 2, 283-99	3.5	72
32	A computational model of anterior cingulate function in speeded response tasks: effects of frequency, sequence, and conflict. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2002 , 2, 300-17	3.5	109
31	Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. <i>Cerebral Cortex</i> , 2002 , 12, 246-57	5.1	159
30	Personality predicts working-memory-related activation in the caudal anterior cingulate cortex. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2002 , 2, 64-75	3.5	120
29	Integration of emotion and cognition in the lateral prefrontal cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 4115-20	11.5	544
28	The role of frontopolar cortex in subgoal processing during working memory. <i>NeuroImage</i> , 2002 , 15, 523-36	7.9	313
27	12. Integration of emotion and cognitive control. Advances in Consciousness Research, 2002, 289-316		15
26	The Role of Prefrontal Cortex in Normal and Disordered Cognitive Control: A Cognitive Neuroscience Perspective 2002 , 428-447		42
25	Sensitivity of prefrontal cortex to changes in target probability: a functional MRI study. <i>Human Brain Mapping</i> , 2001 , 13, 26-33	5.9	127
24	Conflict monitoring and cognitive control. <i>Psychological Review</i> , 2001 , 108, 624-52	6.3	4938
23	Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging <i>Journal of Experimental Psychology: General</i> , 2001 , 130, 746-763	4.7	314
22	Human brain activity time-locked to perceptual event boundaries. <i>Nature Neuroscience</i> , 2001 , 4, 651-5	25.5	379

21	Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. <i>Archives of General Psychiatry</i> , 2001 , 58, 280-8		492	
20	Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. <i>Neurolmage</i> , 2001 , 14, 48-59	7.9	270	
19	Computational Models of Attention and Cognitive Control 2001 , 422-450		4	
18	Anterior cingulate and the monitoriing of response conflict: evidence from an fMRI study of overt verb generation. <i>Journal of Cognitive Neuroscience</i> , 2000 , 12, 298-309	3.1	239	
17	Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. <i>NeuroImage</i> , 2000 , 11, 424-46	7.9	307	
16	Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. <i>Biological Psychiatry</i> , 1999 , 46, 312-28	7.9	418	
15	Overt verbal responding during fMRI scanning: empirical investigations of problems and potential solutions. <i>NeuroImage</i> , 1999 , 10, 642-57	7.9	162	
14	Dopamine, cognitive control, and schizophrenia: the gating model. <i>Progress in Brain Research</i> , 1999 , 121, 327-49	2.9	117	
13	A Biologically Based Computational Model of Working Memory 1999 , 375-411		101	
12	Anterior cingulate cortex, error detection, and the online monitoring of performance. <i>Science</i> , 1998 , 280, 747-9	33.3	2714	
11	A parametric study of prefrontal cortex involvement in human working memory. <i>NeuroImage</i> , 1997 , 5, 49-62	7.9	1393	
10	Temporal dynamics of brain activation during a working memory task. <i>Nature</i> , 1997 , 386, 604-8	50.4	1653	
9	Dissociating working memory from task difficulty in human prefrontal cortex. <i>Neuropsychologia</i> , 1997 , 35, 1373-80	3.2	510	
8	Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. <i>Human Brain Mapping</i> , 1994 , 1, 293-304	5.9	385	
7	Working Memory, Executive Control, and Aging		7	
6	The Dual Mechanisms of Cognitive Control (DMCC) Project		1	
5	Neural coding of cognitive control: The representational similarity analysis approach		4	
4	Pattern similarity analyses of frontoparietal task coding: Individual variation and genetic influences		1	

3 A representational similarity analysis of cognitive control during color-word Stroop 3

The Subjective Value of Cognitive Effort is Encoded by a Domain-General Valuation Network

The Dual Mechanisms of Cognitive Control dataset: A theoretically-guided within-subject task fMRI battery 3