Gang Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3655543/publications.pdf Version: 2024-02-01

623574 610775 30 605 14 24 h-index citations g-index papers 30 30 30 346 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An associative memory circuit based on physical memristors. Neurocomputing, 2022, 472, 12-23.	3.5	42
2	Hierarchical porous N,S odoped carbon material derived from halogenated polymer for battery applications. Nano Select, 2021, 2, 581-590.	1.9	1
3	A novel memcapacitor and its application in a chaotic circuit. Nonlinear Dynamics, 2021, 105, 877-886.	2.7	14
4	Coexisting Multi-Dynamics of a Physical SBT Memristor-Based Chaotic Circuit. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030043.	0.7	13
5	Effects of BaCu(B2O5) additives on the crystal structures and dielectric properties of CaMgGeO4 ceramics for LTCC applications. CrystEngComm, 2020, 22, 4768-4777.	1.3	12
6	Phonon characteristics and intrinsic properties of phase-pure CaMoO4 microwave dielectric ceramic. Journal of Materials Science: Materials in Electronics, 2020, 31, 5686-5691.	1.1	12
7	Dynamics of the two-SBT-memristor-based chaotic circuit. Chinese Physics B, 2020, 29, 110505.	0.7	9
8	Multistability in a physical memristor-based modified Chua's circuit. Chaos, 2019, 29, 043114.	1.0	20
9	Complex Dynamics in a Memcapacitor-Based Circuit. Entropy, 2019, 21, 188.	1.1	34
10	Effects of Initial Conditions and Circuit Parameters on the SBT-Memristor-Based Chaotic Circuit. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950171.	0.7	9
11	A physical SBT-memristor-based Chua's circuit and its complex dynamics. Chaos, 2018, 28, 083121.	1.0	8
12	Dynamics of a physical SBT memristor-based Wien-bridge circuit. Nonlinear Dynamics, 2018, 93, 1681-1693.	2.7	28
13	Establishment of Physical and Mathematical Models for Sr0.95Ba0.05TiO3Memristor. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750148.	0.7	22
14	Memristive Behavior Based on Ba-Doped SrTiO ₃ Films. Chinese Physics Letters, 2017, 34, 038502.	1.3	21
15	A bidirectional DC-DC converters for photovoltaic generation energy storage system. , 2017, , .		2
16	Dynamic Analysis of a Physical SBT Memristor-Based Chaotic Circuit. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1730047.	0.7	25
17	Effects of CaTiO3 on microwave dielectric properties of Li2ZnSiO4 ceramics for LTCC. Journal of Materials Science: Materials in Electronics, 2016, 27, 359-364.	1.1	13
18	Effects of low melting point materials on sinterability and microwave dielectric properties of X2SiO4–CaTiO3 (XÂ=ÂMg, Zn) for LTCC. Journal of Materials Science: Materials in Electronics, 2015, 26, 9195-9199.	1,1	12

Gang Dou

#	Article	IF	CITATIONS
19	The improvement research on microwave dielectric properties of magnesium tungstate for LTCC. Journal of Materials Science: Materials in Electronics, 2015, 26, 608-612.	1.1	19
20	The effect of LMBS glass on the microwave dielectric properties of the Mg3B2O6 for LTCC. Journal of Materials Science: Materials in Electronics, 2015, 26, 4207-4211.	1.1	16
21	The effect of titanium compounds addition on the microwave dielectric properties of the ZnO–Nb2O5 ceramics for LTCC. Journal of Materials Science: Materials in Electronics, 2014, 25, 4319-4325.	1.1	9
22	A new microwave dielectric ceramics for LTCC applications: Li2Mg2(WO4)3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 3712-3715.	1.1	17
23	Lowa€4 emperature Sintering and Microwave Dielectric Properties of <scp><scp>ZnNb</scp></scp> TiO Ceramics with <scp><scp>BaCu</scp></scp> (<scp>K</scp> Ceramics with	< su 1.1 >)	b>2 6
24	Additions, International Journal of Applied Ceramic Technology, 2013, 10, 857-865. Low-temperature sintered Mg2SiO4–CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency. Journal of Materials Science: Materials in Electronics, 2013, 24, 1431-1438.	1.1	43
25	Low temperature sintering and microwave dielectric properties of Li2ZnSiO4 ceramics with ZB glass. Journal of Materials Science: Materials in Electronics, 2013, 24, 1601-1607.	1.1	29
26	TOWARDS THE IMPLEMENTATION OF MEMRISTOR: A STUDY OF THE ELECTRIC PROPERTIES OF Ba _{0.77} Sr _{0.23} TiO ₃ MATERIAL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350204.	0.7	11
27	Low-temperature sintered MgWO4–CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency. Journal of the European Ceramic Society, 2012, 32, 883-890.	2.8	53
28	A new temperature stable microwave dielectric ceramics: ZnTiNb2O8 sintered at low temperatures. Journal of Alloys and Compounds, 2011, 509, 5988-5995.	2.8	80
29	Low temperature sintering and microwave dielectric properties of ZnTiNb2O8 ceramics with BaCu(B2O5) additions. Materials Chemistry and Physics, 2011, 130, 903-908.	2.0	21
30	A single-T chaotic circuit based on a physical memristor. European Physical Journal: Special Topics, O, ,	1.2	4