Naechul Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3655314/publications.pdf

Version: 2024-02-01

932766 752256 23 394 10 20 citations h-index g-index papers 23 23 23 809 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Tunable Mid-Infrared Localized Surface Plasmon Resonances in Silicon Nanowires. Journal of the American Chemical Society, 2012, 134, 16155-16158.	6.6	78
2	Controlling Silicon Nanowire Growth Direction via Surface Chemistry. Nano Letters, 2012, 12, 2865-2870.	4.5	60
3	Perovskite Pattern Formation by Chemical Vapor Deposition Using Photolithographically Defined Templates. Chemistry of Materials, 2019, 31, 8212-8221.	3.2	48
4	Rational Defect Introduction in Silicon Nanowires. Nano Letters, 2013, 13, 1928-1933.	4.5	43
5	Interplay between Defect Propagation and Surface Hydrogen in Silicon Nanowire Kinking Superstructures. ACS Nano, 2014, 8, 3829-3835.	7.3	27
6	Hydrogen-assisted step-edge nucleation of MoSe ₂ monolayers on sapphire substrates. Nanoscale, 2019, 11, 7701-7709.	2.8	25
7	Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability. Journal of the American Chemical Society, 2015, 137, 9861-9869.	6.6	22
8	Synthesis of indium tin oxide (ITO) nanoparticles in supercritical methanol. Journal of Supercritical Fluids, 2016, 113, 39-43.	1.6	17
9	Sidewall Morphology-Dependent Formation of Multiple Twins in Si Nanowires. ACS Nano, 2013, 7, 8206-8213.	7.3	13
10	Diameter modulation as a route to probe the vapour–liquid–solid growth kinetics of semiconductor nanowires. Journal of Materials Chemistry C, 2014, 2, 3285-3291.	2.7	11
11	VLS Homoepitaxy of Lead lodide Nanowires for Hybrid Perovskite Conversion. Journal of Physical Chemistry Letters, 2019, 10, 6741-6749.	2.1	9
12	Inherent Resistance of Seed-Mediated Grown MoSe ₂ Monolayers to Defect Formation. ACS Applied Materials & Defect Formation. ACS Applied Materials & Defect Formation. ACS	4.0	7
13	Interlayer Energy Transfer and Photoluminescence Quenching in MoSe ₂ /Graphene van der Waals Heterostructures for Optoelectronic Devices. ACS Applied Nano Materials, 2021, 4, 12034-12042.	2.4	5
14	Synthesis of manganese oxide microparticles using supercritical water. Journal of Supercritical Fluids, 2016, 112, 114-118.	1.6	4
15	In Situ Vaporâ€Phase Halide Exchange of Patterned Perovskite Thin Films. Small, 2021, 17, 2006737.	5.2	4
16	Fabrication of Ultrathin Zeolitic Imidazolate Framework on Polymeric Hollow Fiber via Sequential Seed Layer Sputtering. Crystal Growth and Design, 2021, 21, 829-837.	1.4	4
17	Sequential surface passivation for enhanced stability of vapor-deposited methylammonium lead iodide thin films. Chemical Engineering Journal, 2022, 439, 135715.	6.6	4
18	Effect of compressed liquid CO2 antisolvent treatment on the synthesis of hierarchically porous nanocarbon from kraft lignin. Journal of Supercritical Fluids, 2017, 123, 1-10.	1.6	3

#	Article	IF	CITATIONS
19	Machine learnings for CVD graphene analysis: From measurement to simulation of SEM images. Journal of Industrial and Engineering Chemistry, 2021, 101, 430-444.	2.9	3
20	Photoimageable Organic Coating Bearing Cyclic Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Applied Materials & Dithiocarbonate for a Multifunctional Surface. ACS Dithiocarbonate for a Multifunctional Surface for a Multifunction	4.0	3
21	Colloidal Synthesis of MoSe2/WSe2 Heterostructure Nanoflowers via Two-Step Growth. Materials, 2021, 14, 7294.	1.3	2
22	Orientation-Dependent Conversion of VLS-Grown Lead Iodide Nanowires into Organic-Inorganic Hybrid Perovskites. Nanomaterials, 2021, 11, 223.	1.9	1
23	Br-Induced Orientation Control of PbI2 van der Waals Nanowires and Their Optoelectronics. ACS Photonics, 0, , .	3.2	1