
Vibha Kalra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3655047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Base/Nucleophile Treatment on Interlayer Ion Intercalation, Surface Terminations, and Osmotic Swelling of Ti ₃ C ₂ T <i>_z</i> MXene Multilayers. Chemistry of Materials, 2022, 34, 678-693.	6.7	33
2	Stabilization of gamma sulfur at room temperature to enable the use of carbonate electrolyte in Li-S batteries. Communications Chemistry, 2022, 5, .	4.5	18
3	Sulfur confined MXene hosts enabling the use of carbonate-based electrolytes in alkali metal (Li/Na/K)-sulfur batteries. Materials Today Energy, 2022, 27, 101000.	4.7	9
4	Synergistic effect of sulfur-rich copolymer/S8 and carbon host porosity in Li-S batteries. Electrochimica Acta, 2021, 365, 137088.	5.2	12
5	Tuning functional two-dimensional MXene nanosheets to enable efficient sulfur utilization in lithium-sulfur batteries. Cell Reports Physical Science, 2021, 2, 100480.	5.6	10
6	Vanadium Monoxide-Based Free-Standing Nanofiber Hosts for High-Loading Lithium-Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 5649-5660.	5.1	10
7	A dual-role electrolyte additive for simultaneous polysulfide shuttle inhibition and redox mediation in sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 26976-26988.	10.3	9
8	Fibrous Phosphorus Quantum Dots for Cell Imaging. ACS Applied Nano Materials, 2020, 3, 752-759.	5.0	22
9	Deposition Behavior of Polyaniline on Carbon Nanofibers by Oxidative Chemical Vapor Deposition. Langmuir, 2020, 36, 13079-13086.	3.5	6
10	Caffeinated Interfaces Enhance Alkaline Hydrogen Electrocatalysis. ACS Catalysis, 2020, 10, 6798-6802.	11.2	20
11	2D Ti3C2Tz MXene Synthesized by Water-free Etching of Ti3AlC2 in Polar Organic Solvents. CheM, 2020, 6, 616-630.	11.7	303
12	Dispersion and Stabilization of Alkylated 2D MXene in Nonpolar Solvents and Their Pseudocapacitive Behavior. Cell Reports Physical Science, 2020, 1, 100042.	5.6	43
13	Engineering conformal nanoporous polyaniline via oxidative chemical vapor deposition and its potential application in supercapacitors. Chemical Engineering Science, 2019, 194, 156-164.	3.8	34
14	Revisiting the use of electrolyte additives in Li–S batteries: the role of porosity of sulfur host materials. Sustainable Energy and Fuels, 2019, 3, 2788-2797.	4.9	13
15	Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries. Journal of Materials Chemistry A, 2019, 7, 11613-11650.	10.3	60
16	High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode. Journal of Materials Research, 2018, 33, 1199-1210.	2.6	18
17	In Situ Grown Iron Oxides on Carbon Nanofibers as Freestanding Anodes in Aqueous Supercapacitors. Advanced Engineering Materials, 2018, 20, 1701116.	3.5	44
18	TiO Phase Stabilized into Freestanding Nanofibers as Strong Polysulfide Immobilizer in Li–S Batteries: Evidence for Lewis Acid–Base Interactions. ACS Applied Materials & Interfaces, 2018, 10, 37937-37947.	8.0	53

Vibha Kalra

#	Article	IF	CITATIONS
19	Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium sulfur batteries. Materials Today Energy, 2018, 9, 336-344.	4.7	34
20	Polysulfide Speciation and Electrolyte Interactions in Lithium–Sulfur Batteries with <i>in Situ</i> Infrared Spectroelectrochemistry. Journal of Physical Chemistry C, 2018, 122, 18195-18203.	3.1	52
21	Highly Durable, Self-Standing Solid-State Supercapacitor Based on an Ionic Liquid-Rich Ionogel and Porous Carbon Nanofiber Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 33749-33757.	8.0	55
22	High-energy density nanofiber-based solid-state supercapacitors. Journal of Materials Chemistry A, 2016, 4, 160-166.	10.3	29
23	Electrochemically Stable Rechargeable Lithium–Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide. Advanced Energy Materials, 2015, 5, 1500738.	19.5	255
24	Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li–S Cells. Journal of Physical Chemistry Letters, 2015, 6, 2163-2169.	4.6	61
25	A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 4530-4538.	10.3	317
26	Binder-free three-dimensional high energy density electrodes for ionic-liquid supercapacitors. Chemical Communications, 2015, 51, 13760-13763.	4.1	25
27	Ionic Liquid Dynamics in Nanoporous Carbon Nanofibers in Supercapacitors Measured with <i>in Operando</i> Infrared Spectroelectrochemistry. Journal of Physical Chemistry C, 2014, 118, 21846-21855.	3.1	64
28	Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. Journal of Power Sources, 2013, 235, 289-296.	7.8	243