
Martin SjĶstrĶm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3654967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic expression of SNAI2 in prostate cancer predicts tumor progression and drug sensitivity. Molecular Oncology, 2022, 16, 2451-2469.	2.1	8
2	Breast cancer hypoxia in relation to prognosis and benefit from radiotherapy after breast-conserving surgery in a large, randomised trial with long-term follow-up. British Journal of Cancer, 2022, 126, 1145-1156.	2.9	20
3	TROP2 Expression Across Molecular Subtypes of Urothelial Carcinoma and Enfortumab Vedotin-resistant Cells. European Urology Oncology, 2022, 5, 714-718.	2.6	32
4	Androgen receptor reprogramming demarcates prognostic, context-dependent gene sets in primary and metastatic prostate cancer. Clinical Epigenetics, 2022, 14, 60.	1.8	8
5	Drug-Induced Epigenomic Plasticity Reprograms Circadian Rhythm Regulation to Drive Prostate Cancer toward Androgen Independence. Cancer Discovery, 2022, 12, 2074-2097.	7.7	22
6	Immune Infiltrate in the Primary Tumor Predicts Effect of Adjuvant Radiotherapy in Breast Cancer; Results from the Randomized SweBCG91RT Trial. Clinical Cancer Research, 2021, 27, 749-758.	3.2	10
7	Proteogenomic Workflow Reveals Molecular Phenotypes Related to Breast Cancer Mammographic Appearance. Journal of Proteome Research, 2021, 20, 2983-3001.	1.8	14
8	Heterogeneity in <i>NECTIN4</i> Expression Across Molecular Subtypes of Urothelial Cancer Mediates Sensitivity to Enfortumab Vedotin. Clinical Cancer Research, 2021, 27, 5123-5130.	3.2	65
9	Prostate-specific Membrane Antigen and Fluciclovine Transporter Genes are Associated with Variable Clinical Features and Molecular Subtypes of Primary Prostate Cancer. European Urology, 2021, 79, 717-721.	0.9	13
10	An integrated functional and clinical genomics approach reveals genes driving aggressive metastatic prostate cancer. Nature Communications, 2021, 12, 4601.	5.8	18
11	Predicting cancer drug TARGETS - TreAtment Response Generalized Elastic-neT Signatures. Npj Genomic Medicine, 2021, 6, 76.	1.7	10
12	Prognosis Associated With Luminal and Basal Subtypes of Metastatic Prostate Cancer. JAMA Oncology, 2021, 7, 1644.	3.4	21
13	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	9.4	198
14	Autoantibody Landscape in Patients with Advanced Prostate Cancer. Clinical Cancer Research, 2020, 26, 6204-6214.	3.2	10
15	Expression of HGF, pMet, and pAkt is related to benefit of radiotherapy after breastâ€conserving surgery: a longâ€ŧerm followâ€up of the SweBCG91â€RT randomised trial. Molecular Oncology, 2020, 14, 2713-2726.	2.1	2
16	Comprehensive Transcriptomic Profiling Identifies Breast Cancer Patients Who May Be Spared Adjuvant Systemic Therapy. Clinical Cancer Research, 2020, 26, 171-182.	3.2	14
17	Plasma membrane expression of G protein-coupled estrogen receptor (GPER)/G protein-coupled receptor 30 (GPR30) is associated with worse outcome in metachronous contralateral breast cancer. PLoS ONE, 2020, 15, e0231786.	1.1	15
18	Differential expression of PSMA and 18F-fluciclovine transporter genes in metastatic castrate-resistant and treatment-emergent small cell/neuroendocrine prostate cancer Journal of Clinical Oncology, 2020, 38, 24-24.	0.8	5

Martin SjĶstrĶm

#	Article	IF	CITATIONS
19	Characterization of PSMA and 18F-fluciclovine transporter gene expression in localized prostate cancer Journal of Clinical Oncology, 2020, 38, 295-295.	0.8	0
20	Tumor-infiltrating lymphocytes in ipsilateral breast tumor recurrences predict prognosis Journal of Clinical Oncology, 2020, 38, 546-546.	0.8	0
21	The comprehensive methylation landscape of metastatic castration-resistant prostate cancer (mCRPC) identifies new phenotypic subtypes: Results from the West Coast Prostate Cancer Dream Team (WCDT) Journal of Clinical Oncology, 2020, 38, 5507-5507.	0.8	0
22	Clinicogenomic Radiotherapy Classifier Predicting the Need for Intensified Locoregional Treatment After Breast-Conserving Surgery for Early-Stage Breast Cancer. Journal of Clinical Oncology, 2019, 37, 3340-3349.	0.8	61
23	Effect of Radiotherapy After Breast-Conserving Surgery Depending on the Presence of Tumor-Infiltrating Lymphocytes: A Long-Term Follow-Up of the SweBCG91RT Randomized Trial. Journal of Clinical Oncology, 2019, 37, 1179-1187.	0.8	41
24	The estrogen receptor coactivator AIB1 is a new putative prognostic biomarker in ER-positive/HER2-negative invasive lobular carcinoma of the breast. Breast Cancer Research and Treatment, 2019, 175, 305-316.	1.1	8
25	The Immune Landscape of Prostate Cancer and Nomination of PD-L2 as a Potential Therapeutic Target. Journal of the National Cancer Institute, 2019, 111, 301-310.	3.0	142
26	Identification and validation of single-sample breast cancer radiosensitivity gene expression predictors. Breast Cancer Research, 2018, 20, 64.	2.2	40
27	Comprehensive transcriptomic profiling to identify breast cancer patients that may be spared adjuvant systemic therapy Journal of Clinical Oncology, 2018, 36, 535-535.	0.8	1
28	TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clinical Cancer Research, 2017, 23, 7072-7083.	3.2	87
29	Response to Radiotherapy After Breast-Conserving Surgery in Different Breast Cancer Subtypes in the Swedish Breast Cancer Group 91 Radiotherapy Randomized Clinical Trial. Journal of Clinical Oncology, 2017, 35, 3222-3229.	0.8	74
30	Cancer associated proteins in blood plasma: Determining normal variation. Proteomics, 2016, 16, 1928-1937.	1.3	9
31	Changes in glycoprotein expression between primary breast tumour and synchronous lymph node metastases or asynchronous distant metastases. Clinical Proteomics, 2015, 12, 13.	1.1	15
32	A Combined Shotgun and Targeted Mass Spectrometry Strategy for Breast Cancer Biomarker Discovery. Journal of Proteome Research, 2015, 14, 2807-2818.	1.8	33
33	Stem cell biomarker ALDH1A1 in breast cancer shows an association with prognosis and clinicopathological variables that is highly cut-off dependent. Journal of Clinical Pathology, 2015, 68, 1012-1019.	1.0	15
34	Remarkable similarities of chromosomal rearrangements between primary human breast cancers and matched distant metastases as revealed by whole-genome sequencing. Oncotarget, 2015, 6, 37169-37184.	0.8	25
35	Lack of G protein-coupled estrogen receptor (GPER) in the plasma membrane is associated with excellent long-term prognosis in breast cancer. Breast Cancer Research and Treatment, 2014, 145, 61-71.	1.1	61
36	G Protein–Coupled Estrogen Receptor Is Apoptotic and Correlates with Increased Distant Disease-Free Survival of Estrogen Receptor–Positive Breast Cancer Patients. Clinical Cancer Research, 2013, 19, 1681-1692.	3.2	33