Janet R Manning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/365494/publications.pdf

Version: 2024-02-01

24 papers 482 citations

840776 11 h-index 713466 21 g-index

28 all docs

28 docs citations

28 times ranked

673 citing authors

#	Article	IF	Citations
1	Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway. Redox Biology, 2018, 18, 25-32.	9.0	66
2	The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial \hat{l}^2 -oxidation enzyme HADHA. Journal of Biological Chemistry, 2018, 293, 17676-17684.	3.4	62
3	Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H265-H274.	3. 2	60
4	Rad GTPase Deletion Increases Lâ€type Calcium Channel Current Leading to Increased Cardiac Contraction. Journal of the American Heart Association, 2013, 2, e000459.	3.7	42
5	Adropin treatment restores cardiac glucose oxidation in pre-diabetic obese mice. Journal of Molecular and Cellular Cardiology, 2019, 129, 174-178.	1.9	41
6	Adropin reduces blood glucose levels in mice by limiting hepatic glucose production. Physiological Reports, 2019, 7, e14043.	1.7	34
7	Loss of GCN5L1 in cardiac cells disrupts glucose metabolism and promotes cell death via reduced Akt/mTORC2 signaling. Biochemical Journal, 2019, 476, 1713-1724.	3.7	22
8	Cardiac-specific deletion of GCN5L1 restricts recovery from ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 129, 69-78.	1.9	19
9	Rad-deletion Phenocopies Tonic Sympathetic Stimulation of the Heart. Journal of Cardiovascular Translational Research, 2016, 9, 432-444.	2.4	17
10	Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet. Scientific Reports, 2020, 10, 10665.	3.3	17
11	Quantitative Phosphoproteomics Using Acetone-Based Peptide Labeling: Method Evaluation and Application to a Cardiac Ischemia/Reperfusion Model. Journal of Proteome Research, 2013, 12, 4268-4279.	3.7	13
12	Low molecular weight fibroblast growth factor-2 signals via protein kinase C and myofibrillar proteins to protect against postischemic cardiac dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1382-H1396.	3.2	12
13	Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovascular Research, 2023, 119, 571-586.	3.8	12
14	Loss of Rad-GTPase produces a novel adaptive cardiac phenotype resistant to systolic decline with aging. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1336-H1345.	3.2	11
15	Fibroblast growth factor-2-induced cardioprotection against myocardial infarction occurs via the interplay between nitric oxide, protein kinase signaling, and ATP-sensitive potassium channels. Growth Factors, 2012, 30, 124-139.	1.7	10
16	Loss of GCN5L1 in cardiac cells limits mitochondrial respiratory capacity under hyperglycemic conditions. Physiological Reports, 2019, 7, e14054.	1.7	9
17	Calreticulin expression in human cardiac myocytes induces ER stressâ€associated apoptosis. Physiological Reports, 2020, 8, e14400.	1.7	8
18	Loss of the mitochondrial phosphate carrier SLC25A3 induces remodeling of the cardiac mitochondrial protein acylome. American Journal of Physiology - Cell Physiology, 2021, 321, C519-C534.	4.6	8

#	Article	IF	CITATIONS
19	GPER-dependent estrogen signaling increases cardiac GCN5L1 expression. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H762-H768.	3.2	6
20	Increased fatty acid oxidation enzyme activity in the hearts of mice fed a high fat diet does not correlate with improved cardiac contractile function. Current Research in Physiology, 2020, 3, 44-49.	1.7	4
21	Rad GTPase Deletion Attenuates Post-Ischemic Cardiac Dysfunction andÂRemodeling. JACC Basic To Translational Science, 2018, 3, 83-96.	4.1	3
22	Diet-induced obese mice are resistant to improvements in cardiac function resulting from short-term adropin treatment. Current Research in Physiology, 2022, 5, 55-62.	1.7	3
23	Phosphoproteomic analysis identifies phospho-Threonine-17 site of phospholamban important in low molecular weight isoform of fibroblast growth factor 2-induced protection against post-ischemic cardiac dysfunction. Journal of Molecular and Cellular Cardiology, 2020, 148, 1-14.	1.9	2
24	Identification of Divergent Regulatory Mechanisms across the RGK Family of Small GTPases. FASEB Journal, 2013, 27, 598.3.	0.5	0