
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/365484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today, 2007, 12, 1068-1075.	6.4	1,262
2	Alginate/Chitosan Nanoparticles are Effective for Oral Insulin Delivery. Pharmaceutical Research, 2007, 24, 2198-2206.	3.5	522
3	Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, 2006, 66, 1-7.	10.2	428
4	Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Progress in Polymer Science, 2014, 39, 2030-2075.	24.7	382
5	InÂvitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 2017, 121, 97-108.	11.4	296
6	Amorphous solid dispersions: Rational selection of a manufacturing process. Advanced Drug Delivery Reviews, 2016, 100, 85-101.	13.7	279
7	Oral Bioavailability of Insulin Contained in Polysaccharide Nanoparticles. Biomacromolecules, 2007, 8, 3054-3060.	5.4	236
8	Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 427-435.	4.3	225
9	Advanced Collagenâ€Based Biomaterials for Regenerative Biomedicine. Advanced Functional Materials, 2019, 29, 1804943.	14.9	219
10	Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2006, 53, 193-202.	5.0	212
11	Lipid-based colloidal carriers for peptide and protein deliveryliposomes versus lipid nanoparticles. International Journal of Nanomedicine, 2007, 2, 595-607.	6.7	210
12	Insulin-Loaded Nanoparticles are Prepared by Alginate Ionotropic Pre-Gelation Followed by Chitosan Polyelectrolyte Complexation. Journal of Nanoscience and Nanotechnology, 2007, 7, 2833-2841.	0.9	200
13	Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnology Advances, 2015, 33, 1342-1354.	11.7	189
14	Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 2013, 65, 1816-1827.	13.7	187
15	Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Advanced Drug Delivery Reviews, 2010, 62, 458-477.	13.7	179
16	Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Advanced Healthcare Materials, 2018, 7, 1701035.	7.6	173
17	Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. Journal of Controlled Release, 2016, 232, 29-41.	9.9	168
18	Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. Journal of Controlled Release, 2016, 225, 75-86.	9.9	167

#	Article	IF	CITATIONS
19	Oral Insulin Delivery: How Far are We?. Journal of Diabetes Science and Technology, 2013, 7, 520-531.	2.2	164
20	Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer's therapy. Colloids and Surfaces B: Biointerfaces, 2017, 152, 296-301.	5.0	163
21	Probing insulin's secondary structure after entrapment into alginate/chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 10-17.	4.3	159
22	Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. International Journal of Pharmaceutics, 2013, 458, 128-134.	5.2	157
23	Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Delivery and Translational Research, 2011, 1, 299-308.	5.8	150
24	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31,5	149
25	Oral insulin delivery by means of solid lipid nanoparticles. International Journal of Nanomedicine, 2007, 2, 743-9.	6.7	149
26	Development and Comparison of Different Nanoparticulate Polyelectrolyte Complexes as Insulin Carriers. International Journal of Peptide Research and Therapeutics, 2006, 12, 131-138.	1.9	144
27	Smart Stimuli Sensitive Nanogels in Cancer Drug Delivery and Imaging: A Review. Current Pharmaceutical Design, 2013, 19, 7203-7218.	1.9	140
28	Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opinion on Drug Delivery, 2011, 8, 1085-1104.	5.0	131
29	The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials, 2014, 35, 9199-9207.	11.4	127
30	Insulin-loaded alginate microspheres for oral delivery – Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydrate Polymers, 2007, 69, 725-731.	10.2	126
31	Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B Coculture Models To Predict Intestinal and Colonic Permeability Compared to Caco-2 Monoculture. Molecular Pharmaceutics, 2017, 14, 1264-1270.	4.6	123
32	Chitosan: An option for development of essential oil delivery systems for oral cavity care?. Carbohydrate Polymers, 2009, 76, 501-508.	10.2	118
33	Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Advanced Functional Materials, 2019, 29, 1806899.	14.9	118
34	Advances in biomaterials for preventing tissue adhesion. Journal of Controlled Release, 2017, 261, 318-336.	9.9	115
35	Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 488-502.	4.3	114
36	Chitosan-based nanoparticles for rosmarinic acid ocular delivery—In vitro tests. International Journal of Biological Macromolecules, 2016, 84, 112-120.	7.5	114

#	Article	IF	CITATIONS
37	Cell-based <i>in vitro</i> models for predicting drug permeability. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 607-621.	3.3	113
38	Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter, 2012, 2, 329-339.	2.6	112
39	The progress of essential oils as potential therapeutic agents: a review. Journal of Essential Oil Research, 2020, 32, 279-295.	2.7	110
40	Facilitated nanoscale delivery of insulin across intestinal membrane models. International Journal of Pharmaceutics, 2011, 412, 123-131.	5.2	107
41	Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials, 2014, 35, 7172-7179.	11.4	105
42	Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. European Journal of Pharmaceutical Sciences, 2018, 114, 103-113.	4.0	104
43	Polymer-based nanocarriers for vaginal drug delivery. Advanced Drug Delivery Reviews, 2015, 92, 53-70.	13.7	102
44	Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. International Journal of Pharmaceutics, 2018, 536, 478-485.	5.2	101
45	Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 1255-1262.	2.9	100
46	Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS Nano, 2015, 9, 8291-8302.	14.6	96
47	Neuroprotective Activity of Hypericum perforatum and Its Major Components. Frontiers in Plant Science, 2016, 7, 1004.	3.6	96
48	Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydrate Polymers, 2011, 84, 919-925.	10.2	95
49	Thiolation and Cellâ€Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin. Advanced Functional Materials, 2016, 26, 3405-3416.	14.9	94
50	Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomaterialia, 2017, 47, 71-80.	8.3	94
51	Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydrate Polymers, 2013, 93, 661-669.	10.2	92
52	A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles. Scientific Reports, 2017, 7, 3736.	3.3	92
53	The solid progress of nanomedicine. Drug Delivery and Translational Research, 2020, 10, 726-729.	5.8	91
54	Development and validation of a rapid reversed-phase HPLC method for the determination of insulin from nanoparticulate systems. Biomedical Chromatography, 2006, 20, 898-903.	1.7	90

#	Article	IF	CITATIONS
55	Stability Study Perspective of the Effect of Freeze-Drying Using Cryoprotectants on the Structure of Insulin Loaded into PLGA Nanoparticles. Biomacromolecules, 2014, 15, 3753-3765.	5.4	89
56	New trends in guided nanotherapies for digestive cancers: A systematic review. Journal of Controlled Release, 2015, 209, 288-307.	9.9	87
57	Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. Journal of Controlled Release, 2016, 243, 43-53.	9.9	86
58	Eradication of Helicobacter pylori: Past, present and future. Journal of Controlled Release, 2014, 189, 169-186.	9.9	83
59	The formulation of nanomedicines for treating tuberculosis. Advanced Drug Delivery Reviews, 2016, 102, 102-115.	13.7	83
60	Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opinion on Drug Delivery, 2019, 16, 271-285.	5.0	83
61	Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 993-1002.	2.8	81
62	Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Materials, 2019, 1, .	6.8	81
63	Study of the interactions between rosmarinic acid and bovine milk whey protein α-Lactalbumin, β-Lactoglobulin and Lactoferrin. Food Research International, 2015, 77, 450-459.	6.2	80
64	A comprehensive review of the neonatal Fc receptor and its application in drug delivery. , 2016, 161, 22-39.		80
65	Chitosan-Coated Solid Lipid Nanoparticles for Insulin Delivery. Methods in Enzymology, 2012, 508, 295-314.	1.0	78
66	Mucoadhesive nanosystems for vaginal microbicide development: friend or foe?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 389-399.	6.1	77
67	Hydrolyzed Galactomannan-Modified Nanoparticles and Flower-Like Polymeric Micelles for the Active Targeting of Rifampicin to Macrophages. Journal of Biomedical Nanotechnology, 2013, 9, 1076-1087.	1.1	77
68	Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials, 2015, 68, 9-20.	11.4	77
69	Models to Predict Intestinal Absorption of Therapeutic Peptides and Proteins. Current Drug Metabolism, 2013, 14, 4-20.	1.2	76
70	Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. International Journal of Nanomedicine, 2015, 10, 5955.	6.7	75
71	Polymeric Nanoparticles Affect the Intracellular Delivery, Antiretroviral Activity and Cytotoxicity of the Microbicide Drug Candidate Dapivirine. Pharmaceutical Research, 2012, 29, 1468-1484.	3.5	74
72	<i>In Vitro</i> and <i>Ex Vivo</i> Evaluation of Polymeric Nanoparticles for Vaginal and Rectal Delivery of the Anti-HIV Drug Dapivirine. Molecular Pharmaceutics, 2013, 10, 2793-2807.	4.6	74

#	Article	IF	CITATIONS
73	Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Delivery, 2015, 22, 885-893.	5.7	74
74	Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. Journal of Controlled Release, 2019, 309, 37-47.	9.9	74
75	Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322-332.	11.4	73
76	Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides, 2018, 101, 112-123.	2.4	71
77	The role of mucus in cell-based models used to screen mucosal drug delivery. Advanced Drug Delivery Reviews, 2018, 124, 50-63.	13.7	67
78	Characterization of solid lipid nanoparticles produced with carnauba wax for rosmarinic acid oral delivery. RSC Advances, 2015, 5, 22665-22673.	3.6	66
79	Interactions of Microbicide Nanoparticles with a Simulated Vaginal Fluid. Molecular Pharmaceutics, 2012, 9, 3347-3356.	4.6	65
80	Therapeutic and Nutraceutical Potential of Rosmarinic Acid - Cytoprotective Properties and Pharmacokinetic Profile. Critical Reviews in Food Science and Nutrition, 2017, 57, 00-00.	10.3	65
81	Dissecting stromal-epithelial interactions in a 3D inÂvitro cellularized intestinal model for permeability studies. Biomaterials, 2015, 56, 36-45.	11.4	65
82	Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs. Materials Science and Engineering C, 2020, 112, 110920.	7.3	65
83	Biodistribution and Pharmacokinetics of Dapivirine-Loaded Nanoparticles after Vaginal Delivery in Mice. Pharmaceutical Research, 2014, 31, 1834-1845.	3.5	64
84	Coffee silverskin: A possible valuable cosmetic ingredient. Pharmaceutical Biology, 2015, 53, 386-394.	2.9	64
85	Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomaterialia, 2016, 44, 332-340.	8.3	63
86	Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. International Journal of Pharmaceutics, 2018, 547, 593-601.	5.2	63
87	Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine, 2011, 6, 123-141.	3.3	62
88	Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. International Journal of Pharmaceutics, 2013, 456, 370-381.	5.2	62
89	Precise engineering of dapivirine-loaded nanoparticles for the development of anti-HIV vaginal microbicides. Acta Biomaterialia, 2015, 18, 77-87.	8.3	62
90	The current status of biodegradable stent to treat benign luminal disease. Materials Today, 2017, 20, 516-529.	14.2	62

#	Article	IF	CITATIONS
91	Solid Lipid Nanoparticles: A Potential Multifunctional Approach towards Rheumatoid Arthritis Theranostics. Molecules, 2015, 20, 11103-11118.	3.8	61
92	Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. Pharmaceutical Biology, 2015, 53, 642-652.	2.9	61
93	Monoclonal antibodies: technologies for early discovery and engineering. Critical Reviews in Biotechnology, 2018, 38, 394-408.	9.0	61
94	Nutlinâ€3a and Cytokine Coâ€loaded Spermineâ€Modified Acetalated Dextran Nanoparticles for Cancer Chemoâ€lmmunotherapy. Advanced Functional Materials, 2017, 27, 1703303.	14.9	61
95	Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Letters, 2019, 440-441, 64-81.	7.2	60
96	Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 111-124.	4.3	60
97	Medicago spp. extracts as promising ingredients for skin care products. Industrial Crops and Products, 2013, 49, 634-644.	5.2	59
98	Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients. International Journal of Pharmaceutics, 2017, 519, 178-185.	5.2	59
99	Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy?. Expert Opinion on Drug Delivery, 2017, 14, 1163-1176.	5.0	59
100	Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 653-663.	2.8	59
101	Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations. Progress in Lipid Research, 2017, 65, 24-44.	11.6	57
102	Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Research International, 2018, 105, 537-547.	6.2	57
103	In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy. Nanoscale, 2016, 8, 10706-10713.	5.6	56
104	Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Progress in Materials Science, 2017, 89, 306-344.	32.8	56
105	Chitosan Formulations as Carriers for Therapeutic Proteins. Current Drug Discovery Technologies, 2011, 8, 157-172.	1.2	55
106	<i>Mad2</i> Checkpoint Gene Silencing Using Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles in Non-Small Cell Lung Cancer Model. Molecular Pharmaceutics, 2014, 11, 3515-3527.	4.6	55
107	Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications. Organic and Biomolecular Chemistry, 2015, 13, 2518-2529.	2.8	55
108	Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy. Journal of Controlled Release, 2017, 264, 1-13.	9.9	55

#	Article	IF	CITATIONS
109	A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Research, 2015, 8, 1505-1521.	10.4	54
110	Engineered Multifunctional Albuminâ€Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	10.0	53
111	Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid. Colloids and Surfaces B: Biointerfaces, 2014, 115, 109-117.	5.0	52
112	Antibodies and associates: Partners in targeted drug delivery. , 2017, 177, 129-145.		52
113	Oral films as breakthrough tools for oral delivery of proteins/peptides. Journal of Controlled Release, 2015, 211, 63-73.	9.9	51
114	Biodistribution and pharmacokinetics of <i>Mad2</i> siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine, 2016, 11, 767-781.	3.3	51
115	Use of Photosensitizers in Semisolid Formulations for Microbial Photodynamic Inactivation. Journal of Medicinal Chemistry, 2016, 59, 4428-4442.	6.4	50
116	Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discovery Today, 2018, 23, 944-959.	6.4	49
117	The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology. International Journal of Antimicrobial Agents, 2013, 41, 5-10.	2.5	48
118	Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: in vitro and animal approaches. International Journal of Nanomedicine, 2016, Volume 11, 3621-3640.	6.7	48
119	Nanomedicine in the development of anti-HIV microbicides. Advanced Drug Delivery Reviews, 2016, 103, 57-75.	13.7	48
120	Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier. Acta Biomaterialia, 2019, 91, 235-247.	8.3	48
121	Zein nanoparticles as low-cost, safe, and effective carriers to improve the oral bioavailability of resveratrol. Drug Delivery and Translational Research, 2020, 10, 826-837.	5.8	48
122	Facts and Figures on Materials Science and Nanotechnology Progress and Investment. ACS Nano, 2021, 15, 15940-15952.	14.6	48
123	SARS-CoV-2 and diabetes: New challenges for the disease. Diabetes Research and Clinical Practice, 2020, 164, 108228.	2.8	48
124	Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Applied Materials & Interfaces, 2018, 10, 44354-44367.	8.0	47
125	Development and Characterization of Chitosan Microparticles-in-Films for Buccal Delivery of Bioactive Peptides. Pharmaceuticals, 2019, 12, 32.	3.8	47
126	Novel non-invasive methods of insulin delivery. Expert Opinion on Drug Delivery, 2012, 9, 1539-1558.	5.0	46

#	Article	IF	CITATIONS
127	Photoimmunoconjugates: novel synthetic strategies to target and treat cancer by photodynamic therapy. Organic and Biomolecular Chemistry, 2019, 17, 2579-2593.	2.8	46
128	siRNA as a tool to improve the treatment of brain diseases: Mechanism, targets and delivery. Ageing Research Reviews, 2015, 21, 43-54.	10.9	45
129	Mucoadhesive nanostructured polyelectrolytes complexes modulate the intestinal permeability of methotrexate. European Journal of Pharmaceutical Sciences, 2018, 111, 73-82.	4.0	45
130	Evaluation of thermal-oxidative stability and antiglioma activity of <i>Zanthoxylum tingoassuiba</i> essential oil entrapped into multi- and unilamellar liposomes. Journal of Liposome Research, 2012, 22, 1-7.	3.3	44
131	Co-association of methotrexate and SPIONs into anti-CD64 antibody-conjugated PLGA nanoparticles for theranostic application. International Journal of Nanomedicine, 2014, 9, 4911.	6.7	44
132	Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release, 2016, 232, 113-119.	9.9	44
133	Building three-dimensional lung models for studying pharmacokinetics of inhaled drugs. Advanced Drug Delivery Reviews, 2021, 170, 386-395.	13.7	44
134	<i>In vitro</i> targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine, 2012, 7, 507-519.	3.3	43
135	Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. International Journal of Nanomedicine, 2014, 9, 1757.	6.7	43
136	Solid Lipid Nanoparticles as Oral Delivery Systems of Phenolic Compounds: Overcoming Pharmacokinetic Limitations for Nutraceutical Applications. Critical Reviews in Food Science and Nutrition, 2015, 57, 00-00.	10.3	43
137	The potential of HIV-1 nanotherapeutics: from <i>in vitro</i> studies to clinical trials. Nanomedicine, 2015, 10, 3597-3609.	3.3	43
138	Engineered albumin-functionalized nanoparticles for improved FcRn binding enhance oral delivery of insulin. Journal of Controlled Release, 2020, 327, 161-173.	9.9	43
139	Assessing the physical–chemical properties and stability of dapivirine-loaded polymeric nanoparticles. International Journal of Pharmaceutics, 2013, 456, 307-314.	5.2	42
140	Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells. International Journal of Biological Macromolecules, 2014, 69, 532-541.	7.5	42
141	Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization. International Journal of Pharmaceutics, 2015, 496, 850-862.	5.2	42
142	Are coffee silverskin extracts safe for topical use? An in vitro and in vivo approach. Industrial Crops and Products, 2015, 63, 167-174.	5.2	42
143	Gellan Gum/Pectin Beads Are Safe and Efficient for the Targeted Colonic Delivery of Resveratrol. Polymers, 2018, 10, 50.	4.5	42
144	Rationally Designed Dendritic Silica Nanoparticles for Oral Delivery of Exenatide. Pharmaceutics, 2019, 11, 418.	4.5	42

#	Article	IF	CITATIONS
145	Mucoadhesive buccal films based on a graft co-polymer – A mucin-retentive hydrogel scaffold. European Journal of Pharmaceutical Sciences, 2020, 142, 105142.	4.0	42
146	In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair. Journal of Controlled Release, 2020, 322, 375-389.	9.9	42
147	Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. Journal of Controlled Release, 2020, 323, 398-411.	9.9	42
148	Chitosan-Grafted Copolymers and Chitosan-Ligand Conjugates as Matrices for Pulmonary Drug Delivery. International Journal of Carbohydrate Chemistry, 2011, 2011, 1-14.	1.5	41
149	Actively Targeted Cetuximab Conjugated γ-Poly(glutamic acid)-Docetaxel Nanomedicines for Epidermal Growth Factor Receptor Over Expressing Colon Cancer Cells. Journal of Biomedical Nanotechnology, 2014, 10, 1416-1428.	1.1	41
150	Permeation of topically applied caffeine from a food by—product in cosmetic formulations: Is nanoscale in vitro approach an option?. International Journal of Pharmaceutics, 2016, 513, 496-503.	5.2	41
151	Acetalated Dextran Nanoparticles Loaded into an Injectable Alginate Cryogel for Combined Chemotherapy and Cancer Vaccination. Advanced Functional Materials, 2019, 29, 1903686.	14.9	41
152	An evaluation of the latest <i>in vitro</i> tools for drug metabolism studies. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 103-119.	3.3	40
153	Synthesis and characterization of non-toxic and thermo-sensitive poly(N) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Carbohydrate Polymers, 2016, 154, 77-85.	Tf 50 427 10.2	7 Td (-isopro 40
154	Chemical modification of drug molecules as strategy to reduce interactions with mucus. Advanced Drug Delivery Reviews, 2018, 124, 98-106.	13.7	40
155	Composite films for vaginal delivery of tenofovir disoproxil fumarate and emtricitabine. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 3-10.	4.3	40
156	Metabolism Balance Regulation via Antagonistâ€Functionalized Injectable Microsphere for Nucleus Pulposus Regeneration. Advanced Functional Materials, 2020, 30, 2006333.	14.9	40
157	Lipid nanocapsules to enhance drug bioavailability to the central nervous system. Journal of Controlled Release, 2020, 322, 390-400.	9.9	40
158	Oral Delivery of Glucagon-like Peptide-1 and Analogs: Alternatives for Diabetes Control?. Journal of Diabetes Science and Technology, 2012, 6, 1486-1497.	2.2	39
159	Formulation and delivery of anti-HIV rectal microbicides: Advances and challenges. Journal of Controlled Release, 2014, 194, 278-294.	9.9	39
160	Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1621-1631.	3.3	39
161	Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration. Journal of NeuroImmune Pharmacology, 2017, 12, 107-119.	4.1	39
162	Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6. Acta Biomaterialia, 2018, 81, 208-218.	8.3	39

#	Article	IF	CITATIONS
163	pH-responsive chitosan based hydrogels affect the release of dapsone: Design, set-up, and physicochemical characterization. International Journal of Biological Macromolecules, 2019, 133, 1268-1279.	7.5	39
164	Gene Silencing via PDA/ERK2â€siRNAâ€Mediated Electrospun Fibers for Peritendinous Antiadhesion. Advanced Science, 2019, 6, 1801217.	11.2	39
165	Development of PLGA-Mannosamine Nanoparticles as Oral Protein Carriers. Biomacromolecules, 2013, 14, 4046-4052.	5.4	38
166	Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 381-393.	3.3	38
167	Synthesis and characterization of 3,6- O,O '- dimyristoyl chitosan micelles for oral delivery of paclitaxel. Colloids and Surfaces B: Biointerfaces, 2017, 152, 220-228.	5.0	38
168	Zein-casein-lysine multicomposite nanoparticles are effective in modulate the intestinal permeability of ferulic acid. International Journal of Biological Macromolecules, 2019, 138, 244-251.	7.5	38
169	Study of the isoflavone content of different extracts of Medicago spp. as potential active ingredient. Industrial Crops and Products, 2014, 57, 110-115.	5.2	37
170	Stability of bioactive solid lipid nanoparticles loaded with herbal extracts when exposed to simulated gastrointestinal tract conditions. Food Research International, 2015, 78, 131-140.	6.2	37
171	Insights into the protective role of solid lipid nanoparticles on rosmarinic acid bioactivity during exposure to simulated gastrointestinal conditions. Colloids and Surfaces B: Biointerfaces, 2016, 139, 277-284.	5.0	37
172	Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood–brain barrier. Nanomedicine, 2017, 12, 1385-1399.	3.3	37
173	Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization. International Journal of Biological Macromolecules, 2017, 96, 786-797.	7.5	37
174	PEGylated PLGA Nanoparticles As a Smart Carrier to Increase the Cellular Uptake of a Coumarin-Based Monoamine Oxidase B Inhibitor. ACS Applied Materials & Interfaces, 2018, 10, 39557-39569.	8.0	37
175	Adhesive nanoparticles with inflammation regulation for promoting skin flap regeneration. Journal of Controlled Release, 2019, 297, 91-101.	9.9	37
176	Synthesis and characterization of chitosan-grafted-polycaprolactone micelles for modulate intestinal paclitaxel delivery. Drug Delivery and Translational Research, 2018, 8, 387-397.	5.8	36
177	Oral nanoparticles based on gellan gum/pectin for colon-targeted delivery of resveratrol. Drug Development and Industrial Pharmacy, 2020, 46, 236-245.	2.0	36
178	Annealing as a tool for the optimization of lyophilization and ensuring of the stability of protein-loaded PLGA nanoparticles. International Journal of Pharmaceutics, 2016, 503, 163-173.	5.2	35
179	Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opinion on Drug Delivery, 2018, 15, 213-222.	5.0	35
180	Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies. European Polymer Journal, 2018, 104, 19-31.	5.4	35

11

#	Article	IF	CITATIONS
181	Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Advanced Drug Delivery Reviews, 2021, 170, 312-339.	13.7	35
182	Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. Journal of Controlled Release, 2021, 331, 198-212.	9.9	35
183	p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. Journal of Controlled Release, 2021, 337, 329-342.	9.9	35
184	Development and validation of a rapid reversed-phase HPLC method for the determination of the non-nucleoside reverse transcriptase inhibitor dapivirine from polymeric nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 167-172.	2.8	34
185	Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 123, 1-8.	4.3	34
186	Application of Coffee Silverskin in cosmetic formulations: physical/antioxidant stability studies and cytotoxicity effects. Drug Development and Industrial Pharmacy, 2016, 42, 99-106.	2.0	33
187	Development, characterization, antioxidant and hepatoprotective properties of poly(ƕcaprolactone) nanoparticles loaded with a neuroprotective fraction of Hypericum perforatum. International Journal of Biological Macromolecules, 2018, 110, 185-196.	7.5	33
188	Non-Small Cell Lung Carcinoma: An Overview on Targeted Therapy. Current Drug Targets, 2015, 16, 1448-1463.	2.1	33
189	Hydrogels containing porphyrin-loaded nanoparticles for topical photodynamic applications. International Journal of Pharmaceutics, 2016, 510, 221-231.	5.2	32
190	Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules. Carbohydrate Polymers, 2018, 194, 411-421.	10.2	32
191	Noncovalent PEG Coating of Nanoparticle Drug Carriers Improves the Local Pharmacokinetics of Rectal Anti-HIV Microbicides. ACS Applied Materials & Interfaces, 2018, 10, 34942-34953.	8.0	32
192	Nanoparticles provide long-term stability of bevacizumab preserving its antiangiogenic activity. Acta Biomaterialia, 2018, 78, 285-295.	8.3	32
193	Nanoparticles for the regulation of intestinal inflammation: opportunities and challenges. Nanomedicine, 2019, 14, 2631-2644.	3.3	32
194	Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation. International Journal of Nanomedicine, 2015, 10, 5865.	6.7	31
195	Influence of glioma cells on a new co-culture in vitro blood–brain barrier model for characterization and validation of permeability. International Journal of Pharmaceutics, 2015, 490, 94-101.	5.2	31
196	Fermentation of bioactive solid lipid nanoparticles by human gut microflora. Food and Function, 2016, 7, 516-529.	4.6	31
197	Development of PLGA nanoparticles loaded with clofazimine for oral delivery: Assessment of formulation variables and intestinal permeability. European Journal of Pharmaceutical Sciences, 2018, 112, 28-37.	4.0	31
198	<i>In vivo, ex vivo</i> and <i>in vitro</i> assessment of buccal permeation of drugs from delivery systems. Expert Opinion on Drug Delivery, 2020, 17, 33-48.	5.0	31

#	Article	IF	CITATIONS
199	Drug-Delivery Systems of Green Tea Catechins for Improved Stability and Bioavailability. Current Medicinal Chemistry, 2013, 20, 4744-4757.	2.4	31
200	Development and validation of a simple reversed-phase HPLC method for the determination of camptothecin in animal organs following administration in solid lipid nanoparticles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 880, 100-107.	2.3	30
201	Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization. Pharmaceutical Research, 2016, 33, 2777-2793.	3.5	30
202	Multicomponent self nano emulsifying delivery systems of resveratrol with enhanced pharmacokinetics profile. European Journal of Pharmaceutical Sciences, 2019, 137, 105011.	4.0	30
203	Clycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential. International Journal of Pharmaceutics, 2019, 570, 118646.	5.2	30
204	Third-generation solid dispersion combining Soluplus and poloxamer 407 enhances the oral bioavailability of resveratrol. International Journal of Pharmaceutics, 2021, 595, 120245.	5.2	30
205	Investigation of the insulin-like properties of zinc(II) complexes of 3-hydroxy-4-pyridinones: Identification of a compound with glucose lowering effect in STZ-induced type I diabetic animals. Journal of Inorganic Biochemistry, 2011, 105, 1675-1682.	3.5	29
206	Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cells. International Journal of Nanomedicine, 2016, 11, 2601.	6.7	29
207	Elucidation of the impact of cell culture conditions of Caco-2 cell monolayer on barrier integrity and intestinal permeability. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 137-141.	4.3	29
208	Development of a PEGylated-Based Platform for Efficient Delivery of Dietary Antioxidants Across the Blood–Brain Barrier. Bioconjugate Chemistry, 2018, 29, 1677-1689.	3.6	29
209	Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers, 2018, 181, 974-985.	10.2	29
210	Fine-tuning the neuroprotective and blood-brain barrier permeability profile of multi-target agents designed to prevent progressive mitochondrial dysfunction. European Journal of Medicinal Chemistry, 2019, 167, 525-545.	5.5	29
211	How to overcome the limitations of current insulin administration with new non-invasive delivery systems. Therapeutic Delivery, 2015, 6, 83-94.	2.2	28
212	Development and characterization of crosslinked hyaluronic acid polymeric films for use in coating processes. International Journal of Pharmaceutics, 2016, 511, 380-389.	5.2	28
213	Optimization of two biopolymer-based oral films for the delivery of bioactive molecules. Materials Science and Engineering C, 2017, 76, 171-180.	7.3	28
214	Targeted Reinforcement of Macrophage Reprogramming Toward M2 Polarization by IL-4-Loaded Hyaluronic Acid Particles. ACS Omega, 2018, 3, 18444-18455.	3.5	28
215	Exploring the antioxidant potentiality of two food by-products into a topical cream: stability <i>, in vitro</i> and <i>in viv</i> evaluation. Drug Development and Industrial Pharmacy, 2016, 42, 880-889.	2.0	27
216	The biopharmaceutical classification system of excipients. Therapeutic Delivery, 2017, 8, 65-78.	2.2	27

#	Article	IF	CITATIONS
217	The role of non-endothelial cells on the penetration of nanoparticles through the blood brain barrier. Progress in Neurobiology, 2017, 159, 39-49.	5.7	27
218	Lipid nanocarriers loaded with natural compounds: Potential new therapies for age related neurodegenerative diseases?. Progress in Neurobiology, 2018, 168, 21-41.	5.7	27
219	<i>In vivo</i> biodistribution of venlafaxine-PLGA nanoparticles for brain delivery: plain vs. functionalized nanoparticles. Expert Opinion on Drug Delivery, 2019, 16, 1413-1427.	5.0	27
220	<p>Delivering amoxicillin at the infection site – a rational design through lipid nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 2781-2795.	6.7	27
221	Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomaterialia, 2021, 125, 312-321.	8.3	27
222	Advances on colorectal cancer 3D models: The needed translational technology for nanomedicine screening. Advanced Drug Delivery Reviews, 2021, 175, 113824.	13.7	27
223	Antioxidants in the Prevention and Treatment of Diabetic Retinopathy – A Review. Journal of Diabetes & Metabolism, 2010, 01, .	0.2	27
224	<i>In vitro</i> Mâ€like cells genesis through a tissueâ€engineered tripleâ€culture intestinal model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 782-788.	3.4	26
225	Carcinoembryonic antigen-targeted nanoparticles potentiate the delivery of anticancer drugs to colorectal cancer cells. International Journal of Pharmaceutics, 2018, 549, 397-403.	5.2	26
226	Pharmaceutical Vehicles for Vaginal and Rectal Administration of Anti-HIV Microbicide Nanosystems. Pharmaceutics, 2019, 11, 145.	4.5	26
227	Targeted Drug Delivery Systems for Lung Macrophages. Current Drug Targets, 2015, 16, 1565-1581.	2.1	26
228	Solid state formulations composed by amphiphilic polymers for delivery of proteins: characterization and stability. International Journal of Pharmaceutics, 2015, 486, 195-206.	5.2	25
229	In Vitro and Ex Vivo Evaluations of Lipid Anti-Cancer Nanoformulations: Insights and Assessment of Bioavailability Enhancement. AAPS PharmSciTech, 2016, 17, 553-571.	3.3	25
230	PLGA nanoparticles are effective to control the colonic release and absorption on ibuprofen. European Journal of Pharmaceutical Sciences, 2018, 115, 119-125.	4.0	25
231	Surface modification with polyethylene glycol enhances colorectal distribution and retention of nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 200-206.	4.3	25
232	Film-nanoparticle composite for enhanced oral delivery of alpha-casozepine. Colloids and Surfaces B: Biointerfaces, 2019, 181, 149-157.	5.0	25
233	Chitosan-based nanomedicine for brain delivery: Where are we heading?. Reactive and Functional Polymers, 2020, 146, 104430.	4.1	25
234	Porphyrin modified trastuzumab improves efficacy of HER2 targeted photodynamic therapy of gastric cancer. International Journal of Cancer, 2017, 141, 1478-1489.	5.1	24

#	Article	IF	CITATIONS
235	Nanotechnology-based siRNA delivery strategies for metastatic colorectal cancer therapy. International Journal of Pharmaceutics, 2019, 568, 118530.	5.2	24
236	Effective intracellular delivery of bevacizumab <i>via</i> PEGylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomaterials Science, 2020, 8, 3720-3729.	5.4	24
237	Antioxidant and Anti-Inflammatory Properties of Cherry Extract: Nanosystems-Based Strategies to Improve Endothelial Function and Intestinal Absorption. Foods, 2020, 9, 207.	4.3	24
238	Protective effects of Lavandula viridis L'Hér extracts and rosmarinic acid against H2O2-induced oxidative damage in A172 human astrocyte cell line. Industrial Crops and Products, 2013, 50, 361-365.	5.2	23
239	Isoflavones in food supplements: chemical profile, label accordance and permeability study in Caco-2 cells. Food and Function, 2015, 6, 938-946.	4.6	23
240	Will dapivirine redeem the promises of anti-HIV microbicides? Overview of product design and clinical testing. Advanced Drug Delivery Reviews, 2016, 103, 20-32.	13.7	23
241	Biophysical study of bevacizumab structure and bioactivity under thermal and pH-stresses. European Journal of Pharmaceutical Sciences, 2017, 105, 127-136.	4.0	23
242	Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(Îμ-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells. Planta Medica, 2017, 83, 434-444.	1.3	23
243	Rectal administration of nanosystems: from drug delivery to diagnostics. Materials Today Chemistry, 2018, 10, 128-141.	3.5	23
244	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	15.6	23
245	Zein-Based Nanoparticles as Oral Carriers for Insulin Delivery. Pharmaceutics, 2022, 14, 39.	4.5	23
246	Pharmacological and toxicological assessment of innovative self-assembled polymeric micelles as powders for insulin pulmonary delivery. Nanomedicine, 2016, 11, 2305-2317.	3.3	22
247	Recent advance of erythrocyte-mimicking nanovehicles: From bench to bedside. Journal of Controlled Release, 2019, 314, 81-91.	9.9	22
248	Polysaccharide-based formulations as potential carriers for pulmonary delivery – A review of their properties and fates. Carbohydrate Polymers, 2022, 277, 118784.	10.2	22
249	Self-aggregates of 3,6-O,O'-dimyristoylchitosan derivative are effective in enhancing the solubility and intestinal permeability of camptothecin. Carbohydrate Polymers, 2017, 177, 178-186.	10.2	21
250	Stem cells as vehicles and targets of nanoparticles. Drug Discovery Today, 2018, 23, 1071-1078.	6.4	21
251	Evaluation of the interactions between rosmarinic acid and bovine milk casein. RSC Advances, 2015, 5, 88529-88538.	3.6	20
252	Exploitation of lipid-polymeric matrices at nanoscale for drug delivery applications. Expert Opinion on Drug Delivery, 2016, 13, 1301-1309.	5.0	20

BRUNO SARMENTO

#	Article	IF	CITATIONS
253	Development and validation of a rapid reversed-phase HPLC method for the quantification of monoclonal antibody bevacizumab from polyester-based nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2017, 142, 171-177.	2.8	20
254	In vivo evaluation of cetuximab-conjugated poly(γ-glutamic acid)-docetaxel nanomedicines in EGFR-overexpressing gastric cancer xenografts. International Journal of Nanomedicine, 2017, Volume 12, 7165-7182.	6.7	20
255	Development and Validation Method for Simultaneous Quantification of Phenolic Compounds in Natural Extracts and Nanosystems. Phytochemical Analysis, 2013, 24, 638-644.	2.4	19
256	Vaginal suppositories containing <i>Lactobacillus acidophilus</i> : development and characterization. Drug Development and Industrial Pharmacy, 2015, 41, 1518-1525.	2.0	19
257	Technological stability of solid lipid nanoparticles loaded with phenolic compounds: Drying process and stability along storage. Journal of Food Engineering, 2017, 196, 1-10.	5.2	19
258	N-(2-Hydroxy)-propyl-3-trimethylammonium, O-Mysristoyl Chitosan Enhances the Solubility and Intestinal Permeability of Anticancer Curcumin. Pharmaceutics, 2018, 10, 245.	4.5	19
259	iPSC-Derived Enterocyte-like Cells for Drug Absorption and Metabolism Studies. Trends in Molecular Medicine, 2018, 24, 696-708.	6.7	19
260	The effect of freeze-drying on mucoadhesion and transport of acrylated chitosan nanoparticles. International Journal of Pharmaceutics, 2020, 573, 118739.	5.2	19
261	Development of an Improved 3D in vitro Intestinal Model to Perform Permeability Studies of Paracellular Compounds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 524018.	4.1	19
262	Development of pH-sensitive vaginal films based on methacrylate copolymers for topical HIV-1 pre-exposure prophylaxis. Acta Biomaterialia, 2021, 121, 316-327.	8.3	19
263	Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydrate Polymers, 2021, 252, 116978.	10.2	19
264	Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. International Journal of Pharmaceutics, 2021, 602, 120655.	5.2	19
265	3D printed systems for colon-specific delivery of camptothecin-loaded chitosan micelles. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 48-56.	4.3	19
266	Glycans as Targets for Drug Delivery in Cancer. Cancers, 2022, 14, 911.	3.7	19
267	From naturally-occurring neurotoxic agents to CNS shuttles for drug delivery. European Journal of Pharmaceutical Sciences, 2015, 74, 63-76.	4.0	18
268	Combinatorial-Designed Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles for Encapsulation and Delivery of Lipid-Modified Platinum Derivatives in Wild-Type and Resistant Non-Small-Cell Lung Cancer Cells. Molecular Pharmaceutics, 2015, 12, 4466-4477.	4.6	18
269	Rational and precise development of amorphous polymeric systems with dapsone by response surface methodology. International Journal of Biological Macromolecules, 2015, 81, 662-671.	7.5	18

270 Cell-based in vitro models for intestinal permeability studies. , 2016, , 57-81.

#	Article	IF	CITATIONS
271	Targeted microbicides for preventing sexual HIV transmission. Journal of Controlled Release, 2017, 266, 119-128.	9.9	18
272	Anti-Inflammatory Effect of Cherry Extract Loaded in Polymeric Nanoparticles: Relevance of Particle Internalization in Endothelial Cells. Pharmaceutics, 2019, 11, 500.	4.5	18
273	Alginate-Based Delivery Systems for Bevacizumab Local Therapy: InÂVitro Structural Features and Release Properties. Journal of Pharmaceutical Sciences, 2019, 108, 1559-1568.	3.3	18
274	Women-specific routes of administration for drugs: A critical overview. Advanced Drug Delivery Reviews, 2021, 176, 113865.	13.7	18
275	Overcoming clofazimine intrinsic toxicity: statistical modelling and characterization of solid lipid nanoparticles. Journal of the Royal Society Interface, 2018, 15, 20170932.	3.4	17
276	Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. International Journal of Pharmaceutics, 2020, 585, 119516.	5.2	17
277	Nanosystem formulations for rectal microbicides: a call for more research. Therapeutic Delivery, 2012, 3, 1-4.	2.2	16
278	Technological strategies to overcome the mucus barrier in mucosal drug delivery. Advanced Drug Delivery Reviews, 2018, 124, 1-2.	13.7	16
279	Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 366-370.	4.3	16
280	Have nanomedicines progressed as much as we'd hoped for in drug discovery and development?. Expert Opinion on Drug Discovery, 2019, 14, 723-725.	5.0	16
281	Impact of CEA-targeting Nanoparticles for Drug Delivery in Colorectal Cancer. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 657-670.	2.5	16
282	Effect of High Hydrostatic Pressure Extraction on Biological Activities and Phenolics Composition of Winter Savory Leaf Extracts. Antioxidants, 2020, 9, 841.	5.1	16
283	Evaluation of lipid nanoparticles for topical delivery of protocatechuic acid and ethyl protocatechuate as a new photoprotection strategy. International Journal of Pharmaceutics, 2020, 582, 119336.	5.2	16
284	All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes. Journal of Controlled Release, 2022, 341, 414-430.	9.9	16
285	Bioactive xanthones with effect on P-glycoprotein and prediction of intestinal absorption. Medicinal Chemistry Research, 2013, 22, 2115-2123.	2.4	15
286	Development and validation of a liquid chromatography-MS/MS method for simultaneous quantification of tenofovir and efavirenz in biological tissues and fluids. Journal of Pharmaceutical and Biomedical Analysis, 2017, 136, 120-125.	2.8	15
287	pH-sensitive nanoparticles for improved oral delivery of dapsone: risk assessment, design, optimization and characterization. Nanomedicine, 2017, 12, 1975-1990.	3.3	15
288	Therapeutic Monoclonal Antibodies Delivery for the Glioblastoma Treatment. Advances in Protein Chemistry and Structural Biology, 2018, 112, 61-80.	2.3	15

#	Article	IF	CITATIONS
289	Colorectal distribution and retention of polymeric nanoparticles following incorporation into a thermosensitive enema. Biomaterials Science, 2019, 7, 3801-3811.	5.4	15
290	Cherry Extract from Prunus avium L. to Improve the Resistance of Endothelial Cells to Oxidative Stress: Mucoadhesive Chitosan vs. Poly(lactic-co-glycolic acid) Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 1759.	4.1	15
291	A nanoemulsion/micelles mixed nanosystem for the oral administration of hydrophobically modified insulin. Drug Delivery and Translational Research, 2021, 11, 524-545.	5.8	15
292	Micelle-based Systems for Pulmonary Drug Delivery and Targeting. Drug Delivery Letters, 2011, 1, 171-185.	0.5	15
293	The relationship between Candida species charge density and chitosan activity evaluated by ion-exchange chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3749-3751.	2.3	14
294	Impact of the in vitro gastrointestinal passage of biopolymer-based nanoparticles on insulin absorption. RSC Advances, 2016, 6, 20155-20165.	3.6	14
295	Proof of pore formation and biophysical perturbations through a 2D amoxicillin-lipid membrane interaction approach. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 803-812.	2.6	14
296	Antiretroviral drug-loaded nanoparticles-in-films: a new option for developing vaginal microbicides?. Expert Opinion on Drug Delivery, 2017, 14, 449-452.	5.0	14
297	Stabilization of bluish pyranoanthocyanin pigments in aqueous systems using lignin nanoparticles. Dyes and Pigments, 2019, 166, 367-374.	3.7	14
298	Delivery Systems for Antimicrobial Peptides and Proteins: Towards Optimization of Bioavailability and Targeting. Current Pharmaceutical Biotechnology, 2017, 18, 108-120.	1.6	14
299	Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition. Advanced Healthcare Materials, 2022, 11, e2102305.	7.6	14
300	Polyester-Based Nanoparticles for the Encapsulation of Monoclonal Antibodies. Methods in Molecular Biology, 2018, 1674, 239-253.	0.9	13
301	Metronidazole within phosphatidylcholine lipid membranes: New insights to improve the design of imidazole derivatives. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 204-214.	4.3	13
302	A biofertilizer with diazotrophic bacteria and a filamentous fungus increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus). Biological Control, 2019, 132, 72-80.	3.0	13
303	Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Advanced Drug Delivery Reviews, 2021, 175, 113778.	13.7	13
304	Targeting Membrane Transporters and Receptors as a mean to Optimize Orally Delivered Biotechnological based Drugs through Nanoparticle Delivery Systems. Current Pharmaceutical Biotechnology, 2014, 15, 650-658.	1.6	13
305	Cell-based in vitro models forÂstudying blood–brain barrier (BBB) permeability. , 2016, , 169-188.		12
306	Development of a microparticulate system containing Brazilian propolis by-product and gelatine for ascorbic acid delivery: evaluation of intestinal cell viability and radical scavenging activity. Food and Function, 2018, 9, 4194-4206.	4.6	12

#	Article	IF	CITATIONS
307	Antagonizing the spindle assembly checkpoint silencing enhances paclitaxel and Navitoclax-mediated apoptosis with distinct mechanistic. Scientific Reports, 2021, 11, 4139.	3.3	12
308	Electrospun fibers for vaginal administration of tenofovir disoproxil fumarate and emtricitabine in the context of topical pre-exposure prophylaxis. Journal of Controlled Release, 2021, 334, 453-462.	9.9	12
309	Intratumoral VEGF nanotrapper reduces gliobastoma vascularization and tumor cell mass. Journal of Controlled Release, 2021, 339, 381-390.	9.9	12
310	Quality by Design: Discussing and Assessing the Solid Dispersions Risk. Current Drug Delivery, 2014, 11, 253-269.	1.6	12
311	Development and validation of a HPLC method for the assay of dapivirine in cell-based and tissue permeability experiments. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 911, 76-83.	2.3	11
312	Antimicrobial properties of rosin acids-loaded nanoparticles against antibiotic-sensitive and antibiotic-resistant foodborne pathogens. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 414-422.	2.8	11
313	Ion-pair approach coupled with nanoparticle formation to increase bioavailability of a low permeability charged drug. International Journal of Pharmaceutics, 2019, 557, 36-42.	5.2	11
314	Quercetin-biapigenin nanoparticles are effective to penetrate the blood–brain barrier. Drug Delivery and Translational Research, 2022, 12, 267-281.	5.8	11
315	Graphene Oxide Topical Administration: Skin Permeability Studies. Materials, 2021, 14, 2810.	2.9	11
316	Validation of a highâ€performance liquid chromatography method for the determination of (â^')â€ <i>α</i> â€bisabolol from particulate systems. Biomedical Chromatography, 2009, 23, 966-972.	1.7	10
317	Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. , 2018, , 1-92.		10
318	Insights into the development of grapefruit nutraceutical powder by spray drying: physical characterization, chemical composition and 3D intestinal permeability. Journal of the Science of Food and Agriculture, 2019, 99, 4686-4694.	3.5	10
319	Design and characterization of an organogel system containing ascorbic acid microparticles produced with propolis by-product. Pharmaceutical Development and Technology, 2020, 25, 54-67.	2.4	10
320	Modelling protein therapeutic co-formulation and co-delivery with PLGA nanoparticles continuously manufactured by microfluidics. Reaction Chemistry and Engineering, 2020, 5, 308-319.	3.7	10
321	Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Advances, 2020, 10, 35198-35205.	3.6	10
322	Lipid Architectonics for Superior Oral Bioavailability of Nelfinavir Mesylate: Comparative in vitro and in vivo Assessment. AAPS PharmSciTech, 2018, 19, 3584-3598.	3.3	9
323	Nanosystems as modulators of intestinal dapsone and clofazimine delivery. Biomedicine and Pharmacotherapy, 2018, 103, 1392-1396.	5.6	9
324	From soil to cosmetic industry: Validation of a new cosmetic ingredient extracted from chestnut shells. Sustainable Materials and Technologies, 2021, 29, e00309.	3.3	9

#	Article	IF	CITATIONS
325	Development of inhaled formulation of modified clofazimine as an alternative to treatment of tuberculosis. Journal of Drug Delivery Science and Technology, 2020, 58, 101805.	3.0	9
326	Antihyperglycemic Potential of Incretins Orally Delivered via Nano and Microsystems and Subsequent Glucoregulatory Effects. Current Pharmaceutical Biotechnology, 2014, 15, 609-619.	1.6	9
327	Model Amphipathic Peptide Coupled with Tacrine to Improve Its Antiproliferative Activity. International Journal of Molecular Sciences, 2021, 22, 242.	4.1	9
328	Osteosarcoma tumor microenvironment: the key for the successful development of biologically relevant 3D in vitro models. In Vitro Models, 2022, 1, 5-27.	2.0	9
329	Chitosan-Based Nanoparticles as Delivery Systems of Therapeutic Proteins. Methods in Molecular Biology, 2012, 899, 471-487.	0.9	8
330	A new approach for a blood-brain barrier model based on phospholipid vesicles: Membrane development and siRNA-loaded nanoparticles permeability. Journal of Membrane Science, 2016, 503, 8-15.	8.2	8
331	The Emerging Role of Multifunctional Theranostic Materials in Cancer Nanomedicine. , 2018, , 1-31.		8
332	Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics. Methods in Molecular Biology, 2020, 2059, 213-224.	0.9	8
333	Local bone metabolism balance regulation via double-adhesive hydrogel for fixing orthopedic implants. Bioactive Materials, 2022, 12, 169-184.	15.6	8
334	A Mouse Intra-Intestinal Infusion Model and its Application to the Study of Nanoparticle Distribution. Frontiers in Physiology, 2016, 7, 579.	2.8	7
335	A Biophysical Insight of Camptothecin Biodistribution: Towards a Molecular Understanding of Its Pharmacokinetic Issues. Pharmaceutics, 2021, 13, 869.	4.5	7
336	Influence of Plasticizers on the pH-Dependent Drug Release and Cellular Interactions of Hydroxypropyl Methylcellulose/Zein Vaginal Anti-HIV Films Containing Tenofovir. Biomacromolecules, 2021, 22, 938-948.	5.4	7
337	Preparation of Polyelectrolyte Nanocomplexes Containing Recombinant Human Hepatocyte Growth Factor as Potential Oral Carriers for Liver Regeneration. Methods in Molecular Biology, 2012, 811, 113-125.	0.9	7
338	Vaginal multipurpose prevention technologies: promising approaches for enhancing women's sexual and reproductive health. Expert Opinion on Drug Delivery, 2020, 17, 379-393.	5.0	7
339	Polymer-Based Delivery Systems for Oral Delivery of Peptides and Proteins. , 0, , 207-226.		6
340	Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine, 2020, 15, 2287-2309.	3.3	6
341	Effect of uremic state in intestine through a co-culture in vitro intestinal epithelial model. International Journal of Pharmaceutics, 2020, 584, 119450.	5.2	6
342	Immunomodulatory nanomedicine for colorectal cancer treatment: a landscape to be explored?. Biomaterials Science, 2021, 9, 3228-3243.	5.4	6

#	Article	IF	CITATIONS
343	Preparation, Characterization and Evaluation of Guar Films Impregnated with Relaxing Peptide Loaded into Chitosan Microparticles. Applied Sciences (Switzerland), 2021, 11, 9849.	2.5	6
344	Bread enriched with resveratrol: Influence of the delivery vehicles on its bioactivity. Food Bioscience, 2022, 49, 101887.	4.4	6
345	Biophysical, photochemical and biochemical characterization of a protease from Aspergillus tamarii URM4634. International Journal of Biological Macromolecules, 2018, 118, 1655-1666.	7.5	5
346	Prediction of sunlight-driven CO2 conversion: Producing methane from photovoltaics, and full system design for single-house application. Materials Today Energy, 2019, 14, 100333.	4.7	5
347	Increasing levels of insulin secretion in bioartificial pancreas technology: co-encapsulation of beta cells and nanoparticles containing GLP-1 in alginate hydrogels. Health and Technology, 2020, 10, 885-890.	3.6	5
348	<i>In vitro</i> intestinal absorption of amino acid mixtures extracted from codfish (<i>Gadus) Tj ETQq0 0 0 rgBT</i>	Overlock 2.7	10 Tf 50 547 4
349	Editorial: Biomedical Engineering Approaches for HIV/AIDS Prophylaxis, Diagnostics and Therapy. Advanced Drug Delivery Reviews, 2016, 103, 1-4.	13.7	4
350	Polyester-Based Nanoparticles for Delivery of Therapeutic Proteins. Methods in Molecular Biology, 2018, 1674, 255-274.	0.9	4
351	Theranostic Biomaterials for Regulation of the Blood–Brain Barrier. , 2019, , 303-319.		4
352	Green synthesis of silver nanoparticles using Withania somnifera extract and their incorporation into a cream with antibacterial activity. Planta Medica, 2014, 80, .	1.3	4
353	Mucus-producing 3D cell culture models. Advanced Drug Delivery Reviews, 2021, 178, 113993.	13.7	4
354	Functionalized FcRn-targeted nanosystems for oral drug delivery: A new approach to colorectal cancer treatment. European Journal of Pharmaceutical Sciences, 2022, 176, 106259.	4.0	4
355	Research Spotlight: Nanomedicines for delivery of therapeutic proteins and biopharmaceuticals. Therapeutic Delivery, 2010, 1, 231-235.	2.2	3
356	Tissue-based in vitro and ex vivo models for buccal permeability studies. , 2016, , 189-202.		3
357	Cell-based in vitro models forÂbuccal permeability studies. , 2016, , 31-40.		3
358	Design and preparation of biomimetic and bioinspired materials. , 2017, , 1-44.		3
359	3D Model Replicating the Intestinal Function to Evaluate Drug Permeability. Methods in Molecular Biology, 2018, 1817, 107-113.	0.9	3
360	Interface-Mediated Mechanism of Action—The Root of the Cytoprotective Effect of Immediate-Release Omeprazole. Journal of Medicinal Chemistry, 2021, 64, 5171-5184.	6.4	3

BRUNO SARMENTO

#	Article	IF	CITATIONS
361	Synthesis and Applications of Amphiphilic Chitosan Derivatives for Drug Delivery Applications. , 2018, , 45-73.		3
362	Advances in the use of 3D colorectal cancer models for novel drug discovery. Expert Opinion on Drug Discovery, 2022, , 1-12.	5.0	3
363	Treating Retinopathies – Nanotechnology as a Tool in Protecting Antioxidants Agents. , 2014, , 3539-3558.		2
364	Therapeutic Approaches toward Multiple Sclerosis: Where Do We Stand and Where Are We Headed?. Advanced Therapeutics, 2019, 2, 1900070.	3.2	2
365	Establishment of a multilayered 3D cellular model of the retinal-blood barrier. International Journal of Pharmaceutics, 2019, 572, 118811.	5.2	2
366	Injectable Porous Microspheres: Metabolism Balance Regulation via Antagonistâ€Functionalized Injectable Microsphere for Nucleus Pulposus Regeneration (Adv. Funct. Mater. 52/2020). Advanced Functional Materials, 2020, 30, 2070348.	14.9	2
367	The potential of porcine ex vivo platform for intestinal permeability screening of FcRn-targeted drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 99-104.	4.3	2
368	Implantable and long-lasting drug delivery systems for cancer treatment. , 2022, , 129-162.		2
369	Oral Delivery of Biopharmaceuticals. , 2014, , 125-147.		2
370	Nanoparticle Functionalization for Brain Targeting Drug Delivery and Diagnostic. , 2016, , 941-959.		2
371	Curcumin loaded MPEG-PCL di-block copolymer nanoparticles protect glioma cells from oxidative damage. Planta Medica, 2014, 80, .	1.3	2
372	Oral nanotechnological approaches for colon-specific drug delivery. , 2018, , 133-168.		2
373	Pulmonary Delivery of Biopharmaceuticals. , 2014, , 169-195.		2
374	Withania somnifera leaf extract delivery as a nanoparticle protect the glioma cells from oxidative damage. Planta Medica, 2015, 81, .	1.3	2
375	Bringing vascularization into glioblastoma in vitro models. Trends in Molecular Medicine, 2022, 28, 84-86.	6.7	2
376	Glioblastoma Vasculature: From its Critical Role in Tumor Survival to Relevant in Vitro Modelling. Frontiers in Drug Delivery, 2022, 2, .	1.6	2
377	Nanoparticulate targeted drug delivery using peptides and proteins. , 2012, , 236-301.		1
378	Quality Control and Good Manufacturing Practice (GMP) for Chitosan-Based Biopharmaceutical Products. , 2012, , 503-524.		1

#	Article	IF	CITATIONS
379	Fundamentals of nanomedicines towards clinical translation. Drug Delivery and Translational Research, 2020, 10, 571-571.	5.8	1
380	The Mad2-Binding Protein p31comet as a potential target for human cancer therapy. Current Cancer Drug Targets, 2021, 21, 401-415.	1.6	1
381	Production and Characterization of Anti-CCR5 siRNA-Loaded Polycaprolactone Nanoparticles for Topical Pre-exposure Prophylaxis. Methods in Molecular Biology, 2021, 2282, 403-416.	0.9	1
382	The effect of hypergravity in intestinal permeability of nanoformulations and molecules. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 38-48.	4.3	1
383	A scale-up strategy for the synthesis of chitosan derivatives used in micellar nanomedicines. International Journal of Pharmaceutics, 2021, 609, 121151.	5.2	1
384	Nanoencapsulation of a Withania somnifera extract with PCL and MPEG-PCL di-block copolymer. Planta Medica, 2014, 80, .	1.3	1
385	Co-encapsulation of Beta Cells and Nanoparticles Containing GLP-1 Greatly Improves Insulin Secretion in Alginate-Based Bioartificial Pancreas. IFMBE Proceedings, 2020, , 1215-1222.	0.3	1
386	Targeting and killing the Ever-Challenging ulcer bug. International Journal of Pharmaceutics, 2022, 617, 121582.	5.2	1
387	From pluripotent stem cells to bioengineered islets: A challenging journey to diabetes treatment. European Journal of Pharmaceutical Sciences, 2022, 172, 106148.	4.0	1
388	MPTHub: An Open-Source Software for Characterizing the Transport of Particles in Biorelevant Media. Nanomaterials, 2022, 12, 1899.	4.1	1
389	Pharmaceutical Manufacturing Validation Principles. , 0, , 811-838.		0
390	Fourteen-day Safety of Daily Vaginal Administration of Dapivirine-loaded Nanoparticles in a Mouse Model. AIDS Research and Human Retroviruses, 2014, 30, A149-A149.	1.1	0
391	Amphiphilic Polymers: Drug Delivery. , 0, , 186-202.		0
392	3D intestinal models towards a more realistic permeability screening. , 2020, , 389-417.		0
393	Structural and functional analysis of broad pH and thermal stable protease from Penicillium aurantiogriseum URM 4622. Preparative Biochemistry and Biotechnology, 2021, , 1-12.	1.9	0
394	Chitosan Polymeric Micelles as Oral Delivery Platform of Hydrophobic Anticancer Drugs. Advances in Polymer Science, 2021, , 251-270.	0.8	0
395	Incorporation of neuroprotective compounds of Hypericum perforatum in polymeric nanoparticles. Planta Medica, 2014, 80, .	1.3	0
396	Castanea sativa Shells: Is Cosmetic Industry a Prominent Opportunity to Valorize This Agro-Waste?. , 2021, 6, .		0

23