Valentina Braito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3654721/publications.pdf

Version: 2024-02-01

80 papers

3,856 citations

147726 31 h-index 61 g-index

80 all docs 80 docs citations

times ranked

80

2023 citing authors

#	Article	IF	CITATIONS
1	Evidence for ultra-fast outflows in radio-quiet AGNs. Astronomy and Astrophysics, 2010, 521, A57.	2.1	479
2	Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1102-1117.	1.6	228
3	Black hole feedback in the luminous quasar PDS 456. Science, 2015, 347, 860-863.	6.0	194
4	The Suzaku view of highly ionized outflows in AGN $\hat{a}\in$ I. Statistical detection and global absorber properties. Monthly Notices of the Royal Astronomical Society, 2013, 430, 60-80.	1.6	190
5	EVIDENCE FOR ULTRA-FAST OUTFLOWS IN RADIO-QUIET ACTIVE GALACTIC NUCLEI. II. DETAILED PHOTOIONIZATION MODELING OF Fe K-SHELL ABSORPTION LINES. Astrophysical Journal, 2011, 742, 44.	1.6	182
6	Evidence for ultrafast outflows in radio-quiet AGNs — III. Location and energetics. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 422, L1-L5.	1.2	153
7	A COMPTON-THICK WIND IN THE HIGH-LUMINOSITY QUASAR, PDS 456. Astrophysical Journal, 2009, 701, 493-507.	1.6	150
8	DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH <i>SUZAKU</i> . Astrophysical Journal, 2010, 719, 700-715.	1.6	144
9	VARIABLE PARTIAL COVERING AND A RELATIVISTIC IRON LINE IN NGC 1365. Astrophysical Journal, 2009, 696, 160-171.	1.6	127
10	"Comets―orbiting a black hole. Astronomy and Astrophysics, 2010, 517, A47.	2.1	119
10	"Comets―orbiting a black hole. Astronomy and Astrophysics, 2010, 517, A47. The ⟨i⟩ Suzaku ⟨ i⟩ view of highly ionized outflows in AGN – II. Location, energetics and scalings with bolometric luminosity. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4169-4182.	2.1	119
	The <i>Suzaku</i> view of highly ionized outflows in AGN – II. Location, energetics and scalings with		
11	The <i>Suzaku </i> View of highly ionized outflows in AGN – II. Location, energetics and scalings with bolometric luminosity. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4169-4182. A <i>Suzaku </i> Ii survey of Fe K lines in Seyfert 1 active galactic nuclei. Monthly Notices of the Royal	1.6	112
11 12	The <i>Suzaku </i> view of highly ionized outflows in AGN â€" II. Location, energetics and scalings with bolometric luminosity. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4169-4182. A <i>Suzaku </i> survey of Fe K lines in Seyfert 1 active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2522-2565. The <i>XMMâ€"Newton </i> long look of NGC 1365: uncovering of the obscured X-ray source. Monthly	1.6	112
11 12 13	The ⟨i⟩ Suzaku ⟨li⟩ view of highly ionized outflows in AGN – II. Location, energetics and scalings with bolometric luminosity. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4169-4182. A⟨i⟩ Suzaku ⟨li⟩ survey of Fe K lines in Seyfert 1 active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2522-2565. The ⟨i⟩ XMM–Newton ⟨li⟩ long look of NGC 1365: uncovering of the obscured X-ray source. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 393, L1-L5. X-ray reverberation in 1Hâ€f0707â~495 revisited. Monthly Notices of the Royal Astronomical Society, 2010,	1.6 1.6	112 106 82
11 12 13	The <i>Suzaku < /i> Suzaku < /i> Nonthly Notices of the Royal Astronomical Society, 2015, 451, 4169-4182. A <i>Suzaku < /i> Suzaku < /i> Suzuku < Suzuku</i></i>	1.6 1.6 1.2	112 106 82 78
11 12 13 14	The ⟨i⟩ Suzaku ⟨li⟩ view of highly ionized outflows in AGN – II. Location, energetics and scalings with bolometric luminosity. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4169-4182. A⟨i⟩ Suzaku ⟨li⟩ survey of Fe K lines in Seyfert 1 active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2522-2565. The ⟨i⟩ XMM–Newton ⟨li⟩ long look of NGC 1365: uncovering of the obscured X-ray source. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 393, L1-L5. X-ray reverberation in 1Hâ€f0707â~495 revisited. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1928-1935. Fe K Emission and Absorption in the XMMâ€EPIC Spectrum of the Seyfert Galaxy IC 4329a. Astrophysical Journal, 2006, 646, 783-800. The XMM-Newton HBS28 sample: Studying the obscuration in hard X-ray selected AGNs. Astronomy and	1.6 1.6 1.2 1.6	112 106 82 78

#	Article	IF	Citations
19	A deep X-ray view of the bare AGN Ark 120. Astronomy and Astrophysics, 2018, 609, A42.	2.1	57
20	Short-term X-ray spectral variability of the quasar PDSÂ456 observed in a low-flux state. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1311-1329.	1.6	55
21	A New Relativistic Component of the Accretion Disk Wind in PDS 456. Astrophysical Journal Letters, 2018, 854, L8.	3.0	50
22	STRUCTURE OF THE ACCRETION FLOW IN BROAD-LINE RADIO GALAXIES: THE CASE OF 3C 390.3. Astrophysical Journal, 2009, 700, 1473-1487.	1.6	48
23	A COMPREHENSIVE X-RAY SPECTRAL ANALYSIS OF THE SEYFERT 1.5 NGC 3227. Astrophysical Journal, 2009, 691, 922-945.	1.6	45
24	Resolving the Soft X-Ray Ultrafast Outflow in PDS 456. Astrophysical Journal, 2020, 895, 37.	1.6	42
25	Lunar Gravitational-wave Antenna. Astrophysical Journal, 2021, 910, 1.	1.6	41
26	Contemporaneous Chandra HETG and Suzaku X-ray observations of NGC 4051. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1965-1986.	1.6	40
27	NGC 454: unveiling a new â€~changing look' active galactic nucleus. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1803-1812.	1.6	40
28	X-ray evidence for the accretion disc–outflow connection in 3C 111. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 418, L89-L93.	1.2	34
29	REVEALING THE LOCATION AND STRUCTURE OF THE ACCRETION DISK WIND IN PDS 456. Astrophysical Journal, 2014, 784, 77.	1.6	33
30	VARIABILITY OF THE HIGH-VELOCITY OUTFLOW IN THE QUASAR PDS 456. Astrophysical Journal, 2014, 780, 45.	1.6	33
31	A HIGH RESOLUTION VIEW OF THE WARM ABSORBER IN THE QUASAR MR 2251-178. Astrophysical Journal, 2013, 776, 99.	1.6	31
32	DISCOVERY OF BROAD SOFT X-RAY ABSORPTION LINES FROM THE QUASAR WIND IN PDS 456. Astrophysical Journal, 2016, 824, 20.	1.6	30
33	Tracking the iron KÂα line and the ultra fast outflow in NGC 2992 at different accretion states. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5638-5649.	1.6	30
34	NGC 1365: A LOW COLUMN DENSITY STATE UNVEILING A LOW IONIZATION DISK WIND. Astrophysical Journal, 2014, 795, 87.	1.6	29
35	<i>CHANDRA</i> DETECTION OF A PARSEC SCALE WIND IN THE BROAD-LINE RADIO GALAXY 3C 382. Astrophysical Journal, 2009, 702, L187-L190.	1.6	27
36	A DEEP X-RAY VIEW OF THE BARE AGN ARK 120. II. EVIDENCE FOR Fe K EMISSION TRANSIENTS. Astrophysical Journal, 2016, 832, 45.	1.6	27

#	Article	IF	CITATIONS
37	Evidence for a truncated accretion disc in the low-luminosity Seyfert galaxy, NGC 7213?. Monthly Notices of the Royal Astronomical Society, 0, 408, 551-564.	1.6	26
38	A rapid occultation event in NGC 3227. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2470-2478.	1.6	25
39	A new powerful and highly variable disc wind in an AGN–star-forming galaxy, the case of MCG-03-58-007. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3592-3603.	1.6	25
40	A Momentum-conserving Accretion Disk Wind in the Narrow-line Seyfert 1 I Zwicky 1. Astrophysical Journal, 2019, 884, 80.	1.6	24
41	A deep X-ray view of the bare AGN Ark 120. Astronomy and Astrophysics, 2019, 623, A11.	2.1	24
42	NGC 2992 IN AN X-RAY HIGH STATE OBSERVED BY <i>XMM-NEWTON</i> : RESPONSE OF THE RELATIVISTIC Fe Kα LINE TO THE CONTINUUM. Astrophysical Journal, 2010, 713, 1256-1265.	1.6	23
43	A DEEP X-RAY VIEW OF THE BARE AGN ARK 120. I. REVEALING THE SOFT X-RAY LINE EMISSION. Astrophysical Journal, 2016, 828, 98.	1.6	23
44	<i>CHANDRA</i> HIGH-RESOLUTION SPECTROSCOPY OF THE CIRCUMNUCLEAR MATTER IN THE BROAD-LINE RADIO GALAXY 3C 445. Astrophysical Journal, 2010, 725, 803-815.	1.6	20
45	The lively accretion disc in NGCÂ2992 – I. Transient iron K emission lines in the high-flux state. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3412-3423.	1.6	18
46	X-ray, UV, and optical time delays in the bright Seyfert galaxy Ark 120 with co-ordinated <i>Swift</i> and ground-based observations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1165-1179.	1.6	18
47	The first broad-band X-ray view of the narrow-line Seyfert 1 Ton S180. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2352-2370.	1.6	17
48	Evidence for a circumnuclear and ionized absorber in the X-ray obscured broad-line radio galaxy 3C 445. Monthly Notices of the Royal Astronomical Society, 2011, 414, 2739-2750.	1.6	16
49	The high-energy view of the broad-line radio galaxy 3C 111. Monthly Notices of the Royal Astronomical Society, 2011, 418, 2367-2380.	1.6	16
50	Testing the blast-wave AGN feedback scenario in MCG-03-58-007. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1927-1938.	1.6	16
51	X-ray flaring in PDSÂ456 observed in a high-flux state. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2804-2819.	1.6	15
52	Resolving the X-Ray Obscuration in a Low-flux Observation of the Quasar PDS 456. Astrophysical Journal, 2018, 867, 38.	1.6	15
53	Swift data hint at a binary supermassive black hole candidate at sub-parsec separation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3804-3813.	1.6	14
54	The first simultaneous X-ray broadband view of Mrk 110 with <i>XMM-Newton</i> and <i>NuSTAR</i> Astronomy and Astrophysics, 2021, 654, A89.	2.1	14

#	Article	IF	Citations
55	OBSERVATIONS OF OUTFLOWING ULTRAVIOLET ABSORBERS IN NGC 4051 WITH THE COSMIC ORIGINS SPECTROGRAPH. Astrophysical Journal, 2012, 751, 84.	1.6	12
56	A high spectral resolution map of the nuclear emitting regions of NGC 7582. Astronomy and Astrophysics, 2017, 600, A135.	2.1	12
57	Evidence for a clumpy disc-wind in the star-forming Seyfert 2 galaxy MCG–03–58–007. Monthly Notion of the Royal Astronomical Society, 2019, 483, 2836-2850.	ces 1.6	12
58	Unveiling Sub-pc Supermassive Black Hole Binary Candidates in Active Galactic Nuclei. Astrophysical Journal, 2020, 902, 10.	1.6	12
59	The <i>Chandra</i> /i>/HETG view of NGCÂ1365 in a Compton-thick state. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2559-2569.	1.6	11
60	A deep X-ray view of the bare AGN Ark 120. Astronomy and Astrophysics, 2019, 623, A12.	2.1	11
61	The flaring X-ray corona in the quasar PDS 456. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1974-1991.	1.6	11
62	Feeding and Feedback in the Powerful Radio Galaxy 3C 120. Astrophysical Journal, 2017, 838, 16.	1.6	10
63	THE COMPLEX CIRCUMNUCLEAR ENVIRONMENT OF THE BROAD-LINE RADIO GALAXY 3C 390.3 REVEALED BY CHANDRA HETG. Astrophysical Journal, 2016, 830, 98.	1.6	9
64	Measuring light echoes in NGC 4051. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3924-3933.	1.6	9
65	A possible sub-kiloparsec dual AGN buried behind the galaxy curtain. Astronomy and Astrophysics, 2021, 646, A153.	2.1	9
66	On the nature of the high-energy rollover in 1H 0419-577. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1258-1270.	1.6	8
67	X-ray variability analysis of a large series of <i>XMM–Newton</i> + <i>NuSTAR</i> observations of NGC 3227. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5056-5074.	1.6	8
68	Dramatic Changes in the Observed Velocity of the Accretion Disk Wind in MCG-03-58-007 Are Revealed by XMM-Newton and NuSTAR. Astrophysical Journal, 2022, 926, 219.	1.6	8
69	The puzzling X-ray continuum of the quasar MR 2251â°'178. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1200-1212.	1.6	7
70	AGN feedback in action: a new powerful wind in 1SXPS J050819.8+172149?. Astronomy and Astrophysics, 2015, 581, A87.	2.1	5
71	The stratified disc wind of MCG-03-58-007. Monthly Notices of the Royal Astronomical Society, 2020, 500, 291-300.	1.6	5
72	The lively accretion disc in NGC 2992 – II. The 2019/2021 X-ray monitoring campaigns. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2974-2993.	1.6	5

#	Article	IF	CITATIONS
73	High-resolution X-Ray Spectroscopy of the Seyfert 1 Galaxy Mrk 1040. Revealing the Failed Nuclear Wind with Chandra. Astrophysical Journal, 2017, 837, 23.	1.6	4
74	XMM–Newton and NuSTAR joint observations of Mrk 915: a deep look into the X-ray propertiesã~ Monthly Notices of the Royal Astronomical Society, 2017, 470, 3924-3936.	1.6	4
75	X-ray emission of Seyfert 2 galaxy MCG-01-24-12. Astronomy and Astrophysics, 2021, 647, A102.	2.1	4
76	Variable oxygen emission from the accretion disk of Mrk 110. Astronomy and Astrophysics, 2021, 649, L3.	2.1	4
77	X-ray obscuration from a variable ionized absorber in PG 1114+445. Astronomy and Astrophysics, 2021, 654, A32.	2.1	4
78	The structure of the X-ray absorber in Mrk 915 revealed by <i>Swift </i> Monthly Notices of the Royal Astronomical Society, 2015, 453, 3612-3619.	1.6	3
79	Elucidating the global distribution of reprocessing gas in NGC 1194. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1983-1991.	1.6	2
80	A search for relativistic outflows signatures in the X-ray spectra of radio-quiet AGNs. , 2010, , .		0