Heather A Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3654444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical Nanosensors for Chemical Analysis inside Single Living Cells. 1. Fabrication, Characterization, and Methods for Intracellular Delivery of PEBBLE Sensors. Analytical Chemistry, 1999, 71, 4831-4836.	6.5	362
2	Optical Nanosensors for Chemical Analysis inside Single Living Cells. 2. Sensors for pH and Calcium and the Intracellular Application of PEBBLE Sensors. Analytical Chemistry, 1999, 71, 4837-4843.	6.5	322
3	In Vivo Biosensing: Progress and Perspectives. ACS Sensors, 2017, 2, 327-338.	7.8	149
4	Optical Drug Monitoring: Photoacoustic Imaging of Nanosensors to Monitor Therapeutic Lithium <i>in Vivo</i> . ACS Nano, 2015, 9, 1692-1698.	14.6	113
5	Fluorescent Ion-Selective Nanosensors for Intracellular Analysis with Improved Lifetime and Size. Nano Letters, 2007, 7, 1827-1831.	9.1	98
6	Fluorescent Nano-Optodes for Glucose Detection. Analytical Chemistry, 2010, 82, 3707-3713.	6.5	88
7	Ion-Selective Nano-optodes Incorporating Quantum Dots. Journal of the American Chemical Society, 2007, 129, 8418-8419.	13.7	86
8	Visualizing sodium dynamics in isolated cardiomyocytes using fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16145-16150.	7.1	67
9	Implantable Nanosensors: Toward Continuous Physiologic Monitoring. Analytical Chemistry, 2014, 86, 1314-1323.	6.5	55
10	Multi-arm Avidin nano-construct for intra-cartilage delivery of small molecule drugs. Journal of Controlled Release, 2020, 318, 109-123.	9.9	52
11	Ion-Switchable Quantum Dot Förster Resonance Energy Transfer Rates in Ratiometric Potassium Sensors. ACS Nano, 2016, 10, 4020-4030.	14.6	48
12	Optical Probes for Neurobiological Sensing and Imaging. Accounts of Chemical Research, 2018, 51, 1023-1032.	15.6	42
13	Biodegradable Optode-Based Nanosensors for in Vivo Monitoring. Analytical Chemistry, 2012, 84, 5787-5793.	6.5	41
14	<i>In vivo</i> sodium concentration continuously monitored with fluorescent sensors. Integrative Biology (United Kingdom), 2011, 3, 142-148.	1.3	40
15	Recent Developments in Nanosensors for Imaging Applications in Biological Systems. Annual Review of Analytical Chemistry, 2019, 12, 109-128.	5.4	36
16	Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging. ACS Nano, 2018, 12, 5761-5773.	14.6	35
17	Polymer-Free Optode Nanosensors for Dynamic, Reversible and Ratiometric Sodium Imaging in the Physiological Range. Scientific Reports, 2013, 3, 3366.	3.3	28
18	Enzyme-linked DNA dendrimer nanosensors for acetylcholine. Scientific Reports, 2015, 5, 14832.	3.3	28

HEATHER A CLARK

#	Article	IF	CITATIONS
19	A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging. Scientific Reports, 2017, 7, 10819.	3.3	28
20	The Design and Development of Fluorescent Nano-Optodes for in Vivo Glucose Monitoring. Journal of Diabetes Science and Technology, 2011, 5, 68-75.	2.2	25
21	Development of an Optical Nanosensor Incorporating a pH-Sensitive Quencher Dye for Potassium Imaging. Analytical Chemistry, 2015, 87, 10684-10687.	6.5	25
22	In Vivo Histamine Optical Nanosensors. Sensors, 2012, 12, 11922-11932.	3.8	22
23	DNA-Based Photoacoustic Nanosensor for Interferon Gamma Detection. ACS Sensors, 2019, 4, 1313-1322.	7.8	21
24	Real-time particle-by-particle detection of erythrocyte-camouflaged microsensor with extended circulation time in the bloodstream. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3509-3517.	7.1	21
25	Ion‣elective Optodes Measure Extracellular Potassium Flux in Excitable Cells. Macromolecular Rapid Communications, 2010, 31, 217-221.	3.9	18
26	Fluorescent Nanoparticles for the Measurement of Ion Concentration in Biological Systems. Journal of Visualized Experiments, 2011, , .	0.3	17
27	Imaging Sodium Flux during Action Potentials in Neurons with Fluorescent Nanosensors and Transparent Microelectrodes. ACS Sensors, 2018, 3, 2499-2505.	7.8	16
28	Gel Encapsulation of Glucose Nanosensors for Prolonged In Vivo Lifetime. Journal of Diabetes Science and Technology, 2013, 7, 53-61.	2.2	10
29	Optical nanosensors for <i>in vivo</i> physiological chloride detection for monitoring cystic fibrosis treatment. Analytical Methods, 2020, 12, 1441-1448.	2.7	10
30	Imaging in vivo acetylcholine release in the peripheral nervous system with a fluorescent nanosensor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
31	Quadruplex Integrated DNA (QuID) Nanosensors for Monitoring Dopamine. Sensors, 2015, 15, 19912-19924.	3.8	8
32	Gadolinium-based MRI contrast agent for the detection of tyrosinase. Analyst, The, 2020, 145, 1169-1173.	3.5	8
33	Dynamic, Simultaneous Concentration Mapping of Multiple MRI Contrast Agents with Dual Contrast - Magnetic Resonance Fingerprinting. Scientific Reports, 2019, 9, 19888.	3.3	6
34	Characterization of DNA nanostructure stability by size exclusion chromatography. Analytical Methods, 2022, 14, 1006-1014.	2.7	4
35	A DNA-Based MRI Contrast Agent for Quantitative pH Measurement. ACS Sensors, 2021, 6, 727-732.	7.8	3
36	From Sensing to Chemical Imaging. ACS Sensors, 2022, 7, 1-2.	7.8	2

#	Article	IF	CITATIONS
37	Has Sensing Become an Engineering Discipline?. ACS Sensors, 2020, 5, 292-293.	7.8	1
38	Happy 5th Anniversary for ACS Sensors. ACS Sensors, 2020, 5, 1-2.	7.8	0
39	Remembering NJ. ACS Sensors, 2020, 5, 887-888.	7.8	0
40	2021: A Year Starting Full of Hope. ACS Sensors, 2021, 6, 1-2.	7.8	0
41	The Virtual Reality of Science Conferences. ACS Sensors, 2021, 6, 588-589.	7.8	0