
N?stor Escalona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3654210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chemical Engineering Journal, 2015, 279, 788-798.	12.7	189
2	CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies. Applied Catalysis B: Environmental, 2018, 237, 817-825.	20.2	152
3	Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: Effects of nitriding methods and support properties. Applied Catalysis A: General, 2012, 439-440, 111-124.	4.3	126
4	Multi-layer Ti3C2Tx-nanoparticles (MXenes) as solid lubricants – Role of surface terminations and intercalated water. Applied Surface Science, 2019, 494, 13-21.	6.1	119
5	Comparison of alumina- and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol. Applied Catalysis A: General, 2012, 435-436, 51-60.	4.3	110
6	Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons. Catalysis Today, 2011, 172, 232-239.	4.4	109
7	Guaiacol transformation over unsupported molybdenum-based nitride catalysts. Applied Catalysis A: General, 2012, 413-414, 78-84.	4.3	94
8	Hydrodeoxygenation of guaiacol over Ni/carbon catalysts: effect of the support and Ni loading. RSC Advances, 2016, 6, 2611-2623.	3.6	94
9	Hydrodeoxygenation of 2-methoxyphenol over different Re active phases supported on SiO 2 catalysts. Applied Catalysis A: General, 2015, 490, 71-79.	4.3	78
10	Catalytic hydrodeoxygenation of anisole over Re-MoO x /TiO 2 and Re-VO x /TiO 2 catalysts. Applied Catalysis B: Environmental, 2017, 208, 60-74.	20.2	73
11	Guaiacol hydrodeoxygenation on MoS2 catalysts: Influence of activated carbon supports. Catalysis Communications, 2012, 27, 44-48.	3.3	71
12	Preparation and characterization of bimetallic Fe–Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction. Microporous and Mesoporous Materials, 2016, 225, 303-311.	4.4	66
13	Carbon nanofiber-supported ReO _x catalysts for the hydrodeoxygenation of lignin-derived compounds. Catalysis Science and Technology, 2016, 6, 4356-4369.	4.1	59
14	Phenol hydrodeoxygenation: effect of support and Re promoter on the reactivity of Co catalysts. Catalysis Science and Technology, 2016, 6, 7289-7306.	4.1	56
15	Migration of surface species on supports: a proof of their role on the synergism between CoSx or NiSx and MoS2 in HDS. Applied Catalysis A: General, 2004, 274, 303-309.	4.3	53
16	Characterization and reactivity of Re(x)/γ-Al2O3 catalysts in hydrodesulfurization and hydrodenitrogenation of gas oil: effect of Re loading. Applied Catalysis A: General, 2002, 234, 45-54.	4.3	52
17	Synergy between Mo/SiO2and Co/SiO2beds in HDS: a remote control effect?. Chemical Communications, 2003, , 1608-1609.	4.1	51
18	The effect of Cu loading on Ni/carbon nanotubes catalysts for hydrodeoxygenation of guaiacol. RSC Advances, 2016, 6, 26658-26667.	3.6	50

#	Article	IF	CITATIONS
19	Impact of physical and physicochemical properties of supplementary cementitious materials on structural build-up of cement-based pastes. Cement and Concrete Research, 2020, 130, 105994.	11.0	50
20	Fischer–Tropsch synthesis over LaFe1â^'xCoxO3 perovskites from a simulated biosyngas feed. Applied Catalysis A: General, 2010, 381, 253-260.	4.3	49
21	Relevance of sulfiding pretreatment on the performance of Re/ZrO2 and Re/ZrO2-sulfated catalysts for the hydrodeoxygenation of guayacol. Applied Catalysis A: General, 2010, 384, 78-83.	4.3	49
22	Hydrodeoxygenation and hydrodesulfurization co-processing over ReS2 supported catalysts. Catalysis Today, 2012, 195, 101-105.	4.4	47
23	Hydrodeoxygenation of guaiacol: Tuning the selectivity to cyclohexene by introducing Ni nanoparticles inside carbon nanotubes. Fuel, 2016, 172, 65-69.	6.4	46
24	Sol–gel La 2 O 3 –ZrO 2 mixed oxide catalysts for biodiesel production. Journal of Energy Chemistry, 2018, 27, 565-572.	12.9	46
25	Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 136-141.	3.9	44
26	Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 2. Catalytic hydrodeoxygenation reactions of lignin model compounds in organic and aqueous systems. Applied Catalysis A: General, 2018, 562, 294-309.	4.3	43
27	MD//Mo and MD//W [MD=Mn, Fe, Co, Ni, Cu and Zn] promotion via spillover hydrogen in hydrodesulfurization. Applied Catalysis A: General, 2008, 345, 152-157.	4.3	42
28	Hydrodeoxygenation of guaiacol over ReS2/activated carbon catalysts. Support and Re loading effect. Applied Catalysis A: General, 2014, 475, 427-437.	4.3	42
29	A study of the hydrodeoxygenation of anisole over Re-MoOx/TiO2 catalyst. Applied Catalysis A: General, 2018, 549, 225-236.	4.3	40
30	Ni nanoparticles prepared from Ce substituted LaNiO3 for the guaiacol conversion. Applied Catalysis A: General, 2014, 481, 1-10.	4.3	37
31	Conversion of guaiacol over supported ReOx catalysts: Support and metal loading effect. Catalysis Today, 2017, 296, 228-238.	4.4	37
32	Effect of Cu addition as a promoter on Re/SiO2 catalysts in the hydrodeoxygenation of 2-methoxyphenol as a model bio oil compound. Fuel, 2016, 186, 112-121.	6.4	36
33	Rhenium sulfide in hydrotreating. Applied Catalysis A: General, 2007, 322, 113-120.	4.3	35
34	The promoter effect of potassium in CuO/CeO ₂ systems supported on carbon nanotubes and graphene for the CO-PROX reaction. Catalysis Science and Technology, 2016, 6, 6118-6127.	4.1	34
35	Lanthanum oxide behavior in La2O3-Al2O3 and La2O3-ZrO2 catalysts with application in FAME production. Fuel, 2019, 253, 400-408.	6.4	34
36	Fischer Tropsch reaction from a mixture similar to biosyngas. Influence of promoters on surface and catalytic properties of Co/SiO2 catalysts. Catalysis Today, 2009, 143, 76-79.	4.4	33

#	Article	IF	CITATIONS
37	BiOI microspheres for photocatalytic degradation of gallic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 318, 71-76.	3.9	33
38	Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 1. Effect of nickel loading and preparation conditions on catalyst properties. Applied Catalysis A: General, 2017, 540, 7-20.	4.3	32
39	Effect of Re content and support in the liquid phase conversion of furfural to furfuryl alcohol and 2-methyl furan over ReOx catalysts. Fuel, 2019, 242, 532-544.	6.4	32
40	Effect of Re loading on the structure, activity and selectivity of Re/C catalysts in hydrodenitrogenation and hydrodesulphurisation of gas oil. Applied Catalysis A: General, 2003, 240, 151-160.	4.3	31
41	Phosphorus effect on Co//Mo and Ni//Mo synergism in hydrodesulphurization catalysts. Applied Catalysis A: General, 2009, 364, 75-79.	4.3	31
42	Carbon nanotube-supported Ni–CeO2 catalysts. Effect of the support on the catalytic performance in the low-temperature WGS reaction. Carbon, 2016, 101, 296-304.	10.3	31
43	Hydrogenation of sodium hydrogen carbonate in aqueous phase using metal/activated carbon catalysts. Applied Catalysis B: Environmental, 2018, 224, 368-375.	20.2	30
44	New trends in the concept of catalytic sites over sulfide catalysts. Catalysis Today, 2005, 107-108, 570-577.	4.4	28
45	Support effect with rhenium sulfide catalysts. Catalysis Today, 2008, 130, 50-55.	4.4	27
46	Effect of P content in the conversion of guaiacol over Mo/γ-Al2O3 catalysts. Applied Catalysis A: General, 2013, 467, 568-574.	4.3	26
47	Catalytic performance of 2D-Mxene nano-sheets for the hydrodeoxygenation (HDO) of lignin-derived model compounds. Catalysis Communications, 2020, 133, 105833.	3.3	26
48	Effect of the hydrogen spillover on the selectivity of dibenzothiophene hydrodesulfurization over CoS /γ-Al2O3, NiS /I³-Al2O3 and MoS2/γ-Al2O3 catalysts. Catalysis Communications, 2006, 7, 1053-1056.	3.3	25
49	Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene. Applied Catalysis A: General, 2016, 513, 89-97.	4.3	24
50	Synthesis of palladium nanoparticles on carbon nanotubes and graphene for the chemoselective hydrogenation of para-chloronitrobenzene. Catalysis Communications, 2016, 75, 55-59.	3.3	22
51	Improvement of the BiOI photocatalytic activity optimizing the solvothermal synthesis. Solid State Sciences, 2017, 63, 84-92.	3.2	22
52	Synergism between unsupported Re and Co or Ni sulfide catalysts in the HDS and HDN of gas oil. Applied Catalysis A: General, 2005, 287, 47-53.	4.3	21
53	Effect of water on the conversions of 2-methoxyphenol and phenol as bio-oil model compounds over ReS2/SiO2 catalyst. Catalysis Communications, 2014, 53, 33-37.	3.3	21
54	Conversion of guaiacol over metal carbides supported on activated carbon catalysts. Catalysis Today, 2020, 356, 376-383.	4.4	21

#	Article	IF	CITATIONS
55	Tuning amphiphilic properties of Ni/Carbon nanotubes functionalized catalysts and their effect as emulsion stabilizer for biomass-derived furfural upgrading. Fuel, 2020, 276, 118032.	6.4	21
56	Highly active ReS2/Î ³ -Al2O3 catalysts: Effect of calcination and activation over thiophene hydrodesulfurization. Catalysis Communications, 2007, 8, 285-288.	3.3	20
57	Fischer Tropsch synthesis from a simulated biosyngas feed over Co(x)/SiO2 catalysts: Effect of Co-loading. Applied Catalysis A: General, 2010, 373, 71-75.	4.3	20
58	Kinetic study of the conversion of 2-methoxyphenol over supported Re catalysts: Sulfide and oxide state. Applied Catalysis A: General, 2015, 505, 302-308.	4.3	20
59	Extraction of guaiacol from hydrocarbons as an alternative for the upgraded bio-oil purification: Experimental and computational thermodynamic study. Fuel, 2020, 280, 118405.	6.4	20
60	Conversion of levulinic acid over Ag substituted LaCoO3 perovskite. Fuel, 2021, 301, 121071.	6.4	20
61	Characterisation and reactivity of Re/carbon catalysts in hydrodesulphurisation of dibenzothiophene: Effect of textural and chemical properties of support. Applied Catalysis A: General, 2009, 358, 26-31.	4.3	19
62	Supported rhenium sulfide catalysts in thiophene and 4,6-dimethyldibenzothiophene hydrodesulfurization: Effect of acidity of the support over activities. Applied Catalysis A: General, 2011, 393, 288-293.	4.3	19
63	Effect of supplementary cementitious materials on viscosity of cement-based pastes. Cement and Concrete Research, 2022, 151, 106635.	11.0	18
64	Ni//Mo synergism via hydrogen spillover, in pyridine hydrodenitrogenation. Catalysis Communications, 2010, 11, 1154-1156.	3.3	17
65	Effect of phosphorus on the activity of Cu/SiO 2 catalysts in the hydrogenolysis of glycerol. Catalysis Today, 2017, 279, 217-223.	4.4	17
66	Conversion of guaiacol over different Re active phases supported on CeO2-Al2O3. Applied Catalysis A: General, 2017, 547, 256-264.	4.3	17
67	Promoter effect of alkalis on CuO/CeO 2 /carbon nanotubes systems for the PROx reaction. Catalysis Today, 2018, 301, 141-146.	4.4	17
68	Synergy between Ni and Co Nanoparticles Supported on Carbon in Guaiacol Conversion. Nanomaterials, 2020, 10, 2199.	4.1	17
69	Insights in supported rhenium carbide catalysts for hydroconversion of lignin-derived compounds. Applied Catalysis A: General, 2020, 599, 117600.	4.3	17
70	Synergism in alumina-supported noble metals and molybdenum stacked-bed catalysts via spillover hydrogen in gas–oil hydrodesulphurization. Catalysis Today, 2010, 156, 65-68.	4.4	15
71	Effect of the preparation of Re/γ-Al2O3 catalysts on the HDS and HDN of gas oil. Applied Catalysis A: General, 2005, 281, 25-30.	4.3	14
72	Promotion of Re/Al2O3 and Re/C catalysts by Ni sulfide in the HDS and HDN of gas oil: Effects of Ni loading and support. Applied Catalysis A: General, 2007, 319, 218-229.	4.3	14

#	Article	IF	CITATIONS
73	Unexpected Support Effect in Hydrotreating: Evidence of a Metallic Character for ReS2/Al2O3 and ReS2/SiO2 Catalysts. Catalysis Letters, 2011, 141, 987-995.	2.6	14
74	Synergisms via hydrogen spillover between some transition metals during hydrodesulphurization: Increased activity towards conversion of refractory molecules. Applied Catalysis A: General, 2011, 399, 63-68.	4.3	13
75	Mercury and lead sorption properties of poly(ethyleneimine) coated onto silica gel. Polymer Bulletin, 2012, 68, 1577-1588.	3.3	13
76	Insights in the mechanism of deposition and growth of RuO2 colloidal nanoparticles over alumina. Implications on the activity for ammonia synthesis. Applied Catalysis A: General, 2015, 502, 48-56.	4.3	13
77	Valorization of biomass derivatives through the conversion of phenol over silica-supported Mo-Re oxide catalysts. Fuel, 2020, 259, 116245.	6.4	13
78	Relevant aspects of the conversion of guaiacol as a model compound for bio-oil over supported molybdenum oxycarbide catalysts. New Journal of Chemistry, 2020, 44, 12027-12035.	2.8	13
79	Study of supported bimetallic MoRe carbides catalysts for guaiacol conversion. Catalysis Today, 2021, 367, 290-296.	4.4	13
80	Electrooxidation of 2-chlorophenol and 2,4,6-chlorophenol on glassy carbon electrodes modified with graphite–zeolite mixtures. Journal of Applied Electrochemistry, 2014, 44, 1295.	2.9	12
81	Effect of the surface oxidation of carbon nanotubes on the selective cyclization of citronellal. Applied Catalysis A: General, 2016, 524, 25-31.	4.3	12
82	Selective conversion of biomass-derived furfural to cyclopentanone over carbon nanotube-supported Ni catalyst in Pickering emulsions. Catalysis Communications, 2020, 144, 106092.	3.3	12
83	HYDROCARBONS SYNTHESIS FROM A SIMULATED BIOSYNGAS FEED OVER FE/SIO2, CATALYSTS. Journal of the Chilean Chemical Society, 2010, 55, .	1.2	11
84	Biomass-derived furfural conversion over Ni/CNT catalysts at the interface of water-oil emulsion droplets. Catalysis Communications, 2020, 144, 106070.	3.3	11
85	Effect of Ni Metal Content on Emulsifying Properties of Ni/CNTox Catalysts for Catalytic Conversion of Furfural in Pickering Emulsions. ChemCatChem, 2021, 13, 682-694.	3.7	11
86	Nanostructured Fe-N-C pyrolyzed catalyst for the H2O2 electrochemical sensing. Electrochimica Acta, 2021, 387, 138468.	5.2	11
87	Effect of the Support Functionalization of Mono- and Bimetallic Ni/Co Supported on Graphene in Hydrodeoxygenation of Guaiacol. Industrial & Engineering Chemistry Research, 2021, 60, 18870-18879.	3.7	11
88	Promoter effect of Co on the catalytic activity of Re/γ-Al2O3 catalysts for the HDS and HDN of gas oil. Applied Catalysis A: General, 2008, 350, 6-15.	4.3	10
89	On the methane adsorption capacity of activated carbons: in search of a correlation with adsorbent properties. Journal of Chemical Technology and Biotechnology, 2009, 84, 1736-1741.	3.2	10
90	Conversion of levulinic acid using CuO/WO3(x)-Al2O3 catalysts. Catalysis Today, 2021, 367, 310-319.	4.4	10

#	Article	IF	CITATIONS
91	Low frequency ultrasound assisted sequential and co-precipitation syntheses of nanoporous RE (Gd) Tj ETQq1 1 ().784314 3.6	rgßT /Overl
92	Catalytic gasification of pine-sawdust: Effect of primary and secondary catalysts. Journal of the Energy Institute, 2019, 92, 1727-1735.	5.3	9
93	Density and Viscosity of Binary Mixtures Composed of Anisole with Dodecane, Hexadecane, Decalin, or 1,4-Dioxane: Experiments and Modeling. Journal of Chemical & Engineering Data, 2020, 65, 2032-2043.	1.9	9
94	Comparison of surface coverage values of tungsten-alumina catalysts determined by different methods. Reaction Kinetics and Catalysis Letters, 1999, 66, 225-229.	0.6	8
95	Deep Hydrodesulphurization via Hydrogen Spillover. Catalysis Letters, 2011, 141, 1796-1802.	2.6	8
96	DEEP DESULFURIZATION BY ADSORPTION OF 4,6-DIMETHYLDIBENZOTHIOPHENE, STUDY OF ADSORPTION ON DIFFERENT TRANSITION METAL OXIDES AND SUPPORTS. Journal of the Chilean Chemical Society, 2013, 58, 2057-2060.	1.2	8
97	Microstructure, vibrational and visible emission properties of low frequency ultrasound (42 kHz) assisted ZnO nanostructures. RSC Advances, 2016, 6, 20437-20446.	3.6	8
98	Poly([(2-methacryloyloxy)ethyl]trimethylammonium chloride): synthesis, characterization, and removal properties of As(V). Polymer Bulletin, 2016, 73, 875-890.	3.3	8
99	Phenomenological model of the effect of organic polymer addition on the control of ammonium nitrate caking. Powder Technology, 2017, 315, 114-125.	4.2	8
100	Environmentally friendly heterogeneous sol–gel La2O3–Al2O3 mixed oxides for transesterification reaction. Chemical Papers, 2018, 72, 2353-2362.	2.2	8
101	Cull- and Coll-Based MOFs: {[La2Cu3(µ-H2O)(ODA)6(H2O)3]â^™3H2O}n and {[La2Co3(ODA)6(H2O)6]â^™12 The Relevance of Physicochemical Properties on the Catalytic Aerobic Oxidation of Cyclohexene. Catalysts, 2020, 10, 589.	H2O}n. 3.5	7
102	Thermal Modification Effect on Supported Cu-Based Activated Carbon Catalyst in Hydrogenolysis of Glycerol. Materials, 2020, 13, 603.	2.9	7
103	Electrodes Based on Zeolites Modified with Cobalt and/or Molybdenum for Pesticide Degradation. Part I: Physicochemical Characterization and Efficiency of the Electrodes for O2 Reduction and H2O2 Production. Electrocatalysis, 2019, 10, 95-111.	3.0	6
104	Insights into Hydrodeoxygenation of Furfural and Guaiacol Mixture: Experimental and Theoretical Studies. Journal of Physical Chemistry C, 2021, 125, 7647-7657.	3.1	6
105	Adsorption of low molecular weight food relevant polyphenols on cross-linked agarose gel. Journal of Molecular Liquids, 2022, 347, 117972.	4.9	6
106	EFFECT OF MO CONTENT IN MO(X)/γ-AL2O3 CATALYSTS OVER THE CONVERSION OF 2-METHOXYPHENOL AS LIGNIN-DERIVATES COMPONENTS. Journal of the Chilean Chemical Society, 2013, 58, 1947-1951.	1.2	5
107	STUDY OF THE CATALYTIC CONVERSION AND ADSORPTION OF ABIETIC ACID ON ACTIVATED CARBON: EFFECT OF SURFACE ACIDITY. Journal of the Chilean Chemical Society, 2016, 61, 3239-3245.	1.2	5
108	The promoter effect of Co on the catalytic activity of the Cu oxide active phase supported on Al ₂ O ₃ in the hydrogenolysis of glycerol. New Journal of Chemistry, 2019, 43, 15636-15645.	2.8	5

#	Article	IF	CITATIONS
109	Conversion of levulinic acid over rhenium oxide catalysts: Effect of metal content. Applied Catalysis A: General, 2021, 625, 118328.	4.3	5
110	Selective photocatalytic conversion of guaiacol using g-C3N4 metal free nanosheets photocatalyst to add-value products. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113513.	3.9	5
111	A new approach to the mechanism for the acetalization of benzaldehyde over MOF catalysts. New Journal of Chemistry, 2020, 44, 14865-14871.	2.8	5
112	Role of β-CD Macromolecule Anchored to α-Fe ₂ O ₃ /TiO ₂ on the Selectivity and Partial Oxidation of Guaiacol to Add-Value Products. ACS Sustainable Chemistry and Engineering, 2021, 9, 11427-11438.	6.7	4
113	Optimizing the carburization conditions of supported rhenium carbide for guaiacol conversion. Applied Catalysis A: General, 2021, 623, 118267.	4.3	4
114	Effect of Pyrolysis Temperature on Copper Aqueous Removal Capability of Biochar Derived from the Kelp Macrocystis pyrifera. Applied Sciences (Switzerland), 2021, 11, 9223.	2.5	4
115	Conversion of succinic acid over Ni and Co catalysts. Catalysis Today, 2021, 367, 165-176.	4.4	3
116	A new porous organic polymer containing Tröger's base units: Evaluation of the catalytic activity in Knoevenagel condensation reaction. Reactive and Functional Polymers, 2021, 167, 104998.	4.1	3
117	Bioactive Compounds of the PVPP Brewery Waste Stream and their Pharmacological Effects. Mini-Reviews in Organic Chemistry, 2020, 17, 91-112.	1.3	3
118	METHANE DRY REFORMING OVER NI SUPPORTED ON PINE SAWDUST ACTIVATED CARBON: EFFECTS OF SUPPORT SURFACE PROPERTIES AND METAL LOADING. Quimica Nova, 2015, , .	0.3	2
119	Electrodes based on zeolites modified with cobalt and/or molybdenum for pesticide degradation: part Il—2,4,6-trichlorophenol degradation. Journal of Solid State Electrochemistry, 2021, 25, 117-131.	2.5	2
120	Evaluation of microstructural and electrical properties of tubular Ni-Ce0.8Sm0.2O1.9 composite anode for SOFC. Materials Research Express, 2019, 6, 115536.	1.6	1
121	ESTUDIO DE LA SINERGIA DEL SISTEMA Ni-Re SOBRE LA ACTIVIDAD CATALÃTICA EN LA REACCIÓN DE HIDRODESULFURACIÓN DE UN GASOIL. Journal of the Chilean Chemical Society, 2001, 46, .	0.1	1
122	HIDRODESULFURACIÓN DE TIOFENO SOBRE CATALIZADORES Ni-W Y Ni-Re. EFECTO DEL SOPORTE. Journal of the Chilean Chemical Society, 2001, 46, .	0.1	0