
Xin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3654181/publications.pdf Version: 2024-02-01

VIN CUEN

#	Article	IF	CITATIONS
1	Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharmaceutica Sinica B, 2022, 12, 339-352.	5.7	40
2	Topical Application of Tetrandrine Nanoemulsion Promotes the Expansion of CD4+Foxp3+ Regulatory T Cells and Alleviates Imiquimod-Induced Psoriasis in Mice. Frontiers in Immunology, 2022, 13, 800283.	2.2	2
3	Targeting Differential Roles of Tumor Necrosis Factor Receptors as a Therapeutic Strategy for Glaucoma. Frontiers in Immunology, 2022, 13, .	2.2	6
4	Scutellarin enhances anti-tumor immune responses by reducing TNFR2-expressing CD4+Foxp3+ regulatory T cells. Biomedicine and Pharmacotherapy, 2022, 151, 113187.	2.5	8
5	Uptake and trafficking of different sized PLGA nanoparticles by dendritic cells in imiquimod-induced psoriasis-like mice model. Acta Pharmaceutica Sinica B, 2021, 11, 1047-1055.	5.7	22
6	The role of CD4 ⁺ FoxP3 ⁺ regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment. International Journal of Biological Sciences, 2021, 17, 1507-1520.	2.6	55
7	Global landscape of patents related to human coronaviruses. International Journal of Biological Sciences, 2021, 17, 1588-1599.	2.6	10
8	TNFR2: Role in Cancer Immunology and Immunotherapy. ImmunoTargets and Therapy, 2021, Volume 10, 103-122.	2.7	20
9	A predictive paradigm for COVID-19 prognosis based on the longitudinal measure of biomarkers. Briefings in Bioinformatics, 2021, 22, .	3.2	9
10	Differential role of TNFR1 and TNFR2 in the development of imiquimod-induced mouse psoriasis. Journal of Leukocyte Biology, 2021, 110, 1047-1055.	1.5	9
11	Cyclophosphamide abrogates the expansion of CD4 ⁺ Foxp3 ⁺ regulatory T cells and enhances the efficacy of bleomycin in the treatment of mouse B16-F10 melanomas. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	4
12	TNF–TNFR2 Signal Plays a Decisive Role in the Activation of CD4+Foxp3+ Regulatory T Cells: Implications in the Treatment of Autoimmune Diseases and Cancer. Advances in Experimental Medicine and Biology, 2021, 1278, 257-272.	0.8	2
13	A TNFR2 antibody by countering immunosuppression cooperates with HMGN1 and R848 immune stimulants to inhibit murine colon cancer. International Immunopharmacology, 2021, 101, 108345.	1.7	19
14	Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice. Journal of Controlled Release, 2020, 319, 87-103.	4.8	48
15	Synergistic Effects of Nanomedicine Targeting TNFR2 and DNA Demethylation Inhibitor—An Opportunity for Cancer Treatment. Cells, 2020, 9, 33.	1.8	16
16	Inhibition of two-pore channels in antigen-presenting cells promotes the expansion of TNFR2-expressing CD4 ⁺ Foxp3 ⁺ regulatory T cells. Science Advances, 2020, 6, .	4.7	13
17	The global chimeric antigen receptor T (CAR-T) cell therapy patent landscape. Nature Biotechnology, 2020, 38, 1387-1394.	9.4	16
18	A profile of TNFR2+ regulatory T cells and CD103+ dendritic cells in the peripheral blood of patients with asthma. Human Immunology, 2020, 81, 634-643.	1.2	2

#	Article	IF	CITATIONS
19	Scoparone as a therapeutic drug in liver diseases: Pharmacology, pharmacokinetics and molecular mechanisms of action. Pharmacological Research, 2020, 160, 105170.	3.1	43
20	Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. Journal of Leukocyte Biology, 2020, 108, 17-41.	1.5	573
21	Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. International Journal of Biological Sciences, 2020, 16, 1708-1717.	2.6	708
22	Accumulation of TNFR2-expressing regulatory T cells in malignant pleural effusion of lung cancer patients is associated with poor prognosis. Annals of Translational Medicine, 2020, 8, 1647-1647.	0.7	14
23	Preferential Expansion of CD4+Foxp3+ Regulatory T Cells (Tregs) In Vitro by Tumor Necrosis Factor. Methods in Molecular Biology, 2020, 2111, 71-78.	0.4	1
24	Editorial: The Role of TNF-TNFR2 Signal in Immunosuppressive Cells and Its Therapeutic Implications. Frontiers in Immunology, 2019, 10, 2126.	2.2	6
25	A Perspective Review on the Role of Nanomedicine in the Modulation of TNF-TNFR2 Axis in Breast Cancer Immunotherapy. Journal of Oncology, 2019, 2019, 1-13.	0.6	27
26	TNFR2-expressing CD4+Foxp3+ regulatory T cells in cancer immunology and immunotherapy. Progress in Molecular Biology and Translational Science, 2019, 164, 101-117.	0.9	15
27	pH-sensitive loaded retinal/indocyanine green micelles as an "all-in-one―theranostic agent for multi-modal imaging in vivo guided cellular senescence-photothermal synergistic therapy. Chemical Communications, 2019, 55, 6209-6212.	2.2	23
28	Tetrandrine inhibits differentiation of proinflammatory subsets of T helper cells but spares de novo differentiation of iTreg cells. International Immunopharmacology, 2019, 69, 307-312.	1.7	24
29	Ancient herbal component may be a novel therapeutic for gouty arthritis. Journal of Leukocyte Biology, 2019, 105, 7-9.	1.5	6
30	Blockade of TNFR2 signaling enhances the immunotherapeutic effect of CpG ODN in a mouse model of colon cancer. Science Signaling, 2018, 11, .	1.6	50
31	Dietary therapy may be sufficient for type 1 diabetes treatment. Cellular and Molecular Immunology, 2018, 15, 85-87.	4.8	2
32	Global patent landscape of programmed cell death 1: implications of the rapid expansion. Expert Opinion on Therapeutic Patents, 2018, 28, 69-80.	2.4	5
33	The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Frontiers in Immunology, 2018, 9, 2572.	2.2	60
34	The p38 MAPK Inhibitor SB203580 Abrogates Tumor Necrosis Factor-Induced Proliferative Expansion of Mouse CD4+Foxp3+ Regulatory T Cells. Frontiers in Immunology, 2018, 9, 1556.	2.2	33
35	Modulation of Regulatory T Cell Activity by TNF Receptor Type II-Targeting Pharmacological Agents. Frontiers in Immunology, 2018, 9, 594.	2.2	47
36	TNF Receptor Type II as an Emerging Drug Target for the Treatment of Cancer, Autoimmune Diseases, and Graft-Versus-Host Disease: Current Perspectives and In Silico Search for Small Molecule Binders. Frontiers in Immunology, 2018, 9, 1382.	2.2	17

#	Article	IF	CITATIONS
37	Deficiency in Fpr2 results in reduced numbers of Linâ^'cKit+Sca1+ myeloid progenitor cells. Journal of Biological Chemistry, 2018, 293, 13452-13463.	1.6	7
38	Targeting TNFR2, an immune checkpoint stimulator and oncoprotein, is a promising treatment for cancer. Science Signaling, 2017, 10, .	1.6	62
39	Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. Journal of Controlled Release, 2017, 254, 44-54.	4.8	129
40	Emerging trends and new developments in monoclonal antibodies: A scientometric analysis (1980–2016). Human Vaccines and Immunotherapeutics, 2017, 13, 1388-1397.	1.4	21
41	Development of a Curative Therapeutic Vaccine (TheraVac) for the Treatment of Large Established Tumors. Scientific Reports, 2017, 7, 14186.	1.6	32
42	Drugs for Autoimmune Inflammatory Diseases: From Small Molecule Compounds to Anti-TNF Biologics. Frontiers in Pharmacology, 2017, 8, 460.	1.6	246
43	Effects of Chinese Medicinal Components on Chemokine Receptors: Theory, Results, and Methodology. , 2016, , 187-197.		0
44	Paradoxical effects of targeting TNF signalling in the treatment of autoimmunity. Nature Reviews Rheumatology, 2016, 12, 625-626.	3.5	17
45	TNFR2 expression by CD4 effector T cells is required to induce full-fledged experimental colitis. Scientific Reports, 2016, 6, 32834.	1.6	37
46	Suppressive activity of human regulatory T cells is maintained in the presence of TNF. Nature Medicine, 2016, 22, 16-17.	15.2	93
47	CD4 + CD25 + regulatory T cells in tumor immunity. International Immunopharmacology, 2016, 34, 244-249.	1.7	102
48	Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. Journal of Immunology, 2016, 196, 3385-3397.	0.4	27
49	Crosstalk between Tumor Cells and Macrophages in Stroma Renders Tumor Cells as the Primary Source of MCP-1/CCL2 in Lewis Lung Carcinoma. Frontiers in Immunology, 2015, 6, 332.	2.2	34
50	Characterization of MT-2 cells as a human regulatory T cell-like cell line. Cellular and Molecular Immunology, 2015, 12, 780-782.	4.8	30
51	IKKα is required for the homeostasis of regulatory T cells and for the expansion of both regulatory and effector CD4 T cells. FASEB Journal, 2015, 29, 443-454.	0.2	41
52	Research and development of therapeutic mAbs: An analysis based on pipeline projects. Human Vaccines and Immunotherapeutics, 2015, 11, 2769-2776.	1.4	34
53	Expression of TNFR2 by regulatory T cells in peripheral blood is correlated with clinical pathology of lung cancer patients. Cancer Immunology, Immunotherapy, 2015, 64, 1475-1485.	2.0	66
54	Effective Chemoimmunotherapy with Anti-TGFβ Antibody and Cyclophosphamide in a Mouse Model of Breast Cancer. PLoS ONE, 2014, 9, e85398.	1.1	43

#	Article	IF	CITATIONS
55	Synergistic antitumor effects of a TGFβ inhibitor and cyclophosphamide. Oncolmmunology, 2014, 3, e28247.	2.1	7
56	Regulatory T Cells and Myeloid-Derived Suppressor Cells in the Tumor Microenvironment Undergo Fas-Dependent Cell Death during IL-2/αCD40 Therapy. Journal of Immunology, 2014, 192, 5821-5829.	0.4	60
57	In vitro generated Th17 cells support the expansion and phenotypic stability of CD4+Foxp3+ regulatory T cells in vivo. Cytokine, 2014, 65, 56-64.	1.4	20
58	Progranulin promotes tumour necrosis factorâ€induced proliferation of suppressive mouse <scp>CD</scp> 4 ⁺ Â <scp>F</scp> oxp3 ⁺ regulatory <scp>T</scp> cells. Immunology, 2014, 142, 193-201.	2.0	28
59	The Alarmin HMGN1 Contributes to Antitumor Immunity and Is a Potent Immunoadjuvant. Cancer Research, 2014, 74, 5989-5998.	0.4	56
60	Th17 cells and Tregs: unlikely allies. Journal of Leukocyte Biology, 2014, 95, 723-731.	1.5	81
61	TNFR2 Is Critical for the Stabilization of the CD4+Foxp3+ Regulatory T Cell Phenotype in the Inflammatory Environment. Journal of Immunology, 2013, 190, 1076-1084.	0.4	244
62	Resolving the identity myth: Key markers of functional CD4+FoxP3+ regulatory T cells. International Immunopharmacology, 2011, 11, 1489-1496.	1.7	92
63	The phenotypic and functional consequences of tumour necrosis factor receptor type 2 expression on CD4+ $\hat{a}\in f$ FoxP3+ regulatory T cells. Immunology, 2011, 133, 426-433.	2.0	65
64	Contrasting effects of TNF and antiâ€∢NF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Letters, 2011, 585, 3611-3618.	1.3	88
65	TNF optimally activatives regulatory T cells by inducing TNF receptor superfamily members TNFR2, 4â€∃BB and OX40. European Journal of Immunology, 2011, 41, 2010-2020.	1.6	88
66	Comment on "Interplay between TNF and Regulatory T Cells in a TNF-Driven Murine Model of Arthritis― Journal of Immunology, 2011, 187, 1527.1-1527.	0.4	0
67	Novel Peptides Based on HIV-1 gp120 Sequence with Homology to Chemokines Inhibit HIV Infection in Cell Culture. PLoS ONE, 2011, 6, e14474.	1.1	6
68	Coâ€expression of TNFR2 and CD25 identifies more of the functional CD4 ⁺ FOXP3 ⁺ regulatory T cells in human peripheral blood. European Journal of Immunology, 2010, 40, 1099-1106.	1.6	185
69	Expression of Costimulatory TNFR2 Induces Resistance of CD4+FoxP3â^' Conventional T Cells to Suppression by CD4+FoxP3+ Regulatory T Cells. Journal of Immunology, 2010, 185, 174-182.	0.4	117
70	Maturation and Activation of Dendritic Cells by Botanicals Used in Traditional Chinese Medicine: Role in Immune Enhancement. , 2010, , 497-514.		0
71	TNF-α: An Activator of CD4+FoxP3+TNFR2+ Regulatory T Cells. Current Directions in Autoimmunity, 2010, 11, 119-134.	8.0	99
72	Successful immunotherapy with IL-2/anti-CD40 induces the chemokine-mediated mitigation of an immunosuppressive tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19455-19460.	3.3	77

#	Article	IF	CITATIONS
73	293 IFN-γ 3′untranslated region AU-RICH element-deleted mice have altered immune structure and function. Cytokine, 2008, 43, 313.	1.4	0
74	Cutting Edge: Expression of TNFR2 Defines a Maximally Suppressive Subset of Mouse CD4+CD25+FoxP3+ T Regulatory Cells: Applicability to Tumor-Infiltrating T Regulatory Cells. Journal of Immunology, 2008, 180, 6467-6471.	0.4	280
75	Development of regulatory T cells requires IL-7Rα stimulation by IL-7 or TSLP. Blood, 2008, 112, 3283-3292.	0.6	118
76	Pertussis Toxin by Inducing IL-6 Promotes the Generation of IL-17-Producing CD4 Cells. Journal of Immunology, 2007, 178, 6123-6129.	0.4	88
77	Interaction of TNF with TNF Receptor Type 2 Promotes Expansion and Function of Mouse CD4+CD25+ T Regulatory Cells. Journal of Immunology, 2007, 179, 154-161.	0.4	464
78	Splenic CD19â^'CD35+B220+ cells function as an inducer of follicular dendritic cell network formation. Blood, 2007, 110, 1215-1224.	0.6	24
79	Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells. Biochemical and Biophysical Research Communications, 2007, 362, 44-50.	1.0	20
80	Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. International Immunopharmacology, 2007, 7, 1819-1824.	1.7	230
81	Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. European Journal of Immunology, 2006, 36, 671-680.	1.6	96
82	Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3+CD4+CD25+ T regulatory cellsin vivo and enhances their capacity to suppress EAE. European Journal of Immunology, 2006, 36, 2139-2149.	1.6	206
83	Dendritic cells as a pharmacological target of traditional Chinese medicine. Cellular and Molecular Immunology, 2006, 3, 401-10.	4.8	28
84	Autoantigens signal through chemokine receptors: uveitis antigens induce CXCR3- and CXCR5-expressing lymphocytes and immature dendritic cells to migrate. Blood, 2005, 105, 4207-4214.	0.6	38
85	Triptolide, a constituent of immunosuppressive Chinese herbal medicine, is a potent suppressor of dendritic-cell maturation and trafficking. Blood, 2005, 106, 2409-2416.	0.6	69
86	BALB/c mice have more CD4+CD25+ T regulatory cells and show greater susceptibility to suppression of their CD4+CD25- responder T cells than C57BL/6 mice. Journal of Leukocyte Biology, 2005, 78, 114-121.	1.5	101
87	Triptolide Attenuates Endotoxin- and Staphylococcal Exotoxin-Induced T-Cell Proliferation and Production of Cytokines and Chemokines. Immunopharmacology and Immunotoxicology, 2005, 27, 53-66.	1.1	39
88	Effects of IL-7 and dexamethasone: Induction of CD25, the high affinity IL-2 receptor, on human CD4+ cells. Cellular Immunology, 2004, 232, 57-63.	1.4	15
89	Yin Zi Huang, an Injectable Multicomponent Chinese Herbal Medicine, Is a Potent Inhibitor of T-Cell Activation. Journal of Alternative and Complementary Medicine, 2004, 10, 519-526.	2.1	22
90	Differential response of murine CD4+CD25+and CD4+CD25-T cells to dexamethasone-induced cell death. European Journal of Immunology, 2004, 34, 859-869.	1.6	173

#	Article	IF	CITATIONS
91	Chemokines and chemokine receptors as novel therapeutic targets in rheumatoid arthritis (RA): inhibitory effects of traditional Chinese medicinal components. Cellular and Molecular Immunology, 2004, 1, 336-42.	4.8	33
92	RNase Protection Assay for the Study of the Differential Effects of Therapeutic Agents in Suppressing Staphylococcal Enterotoxin B-Induced Cytokines in Human Peripheral Blood Mononuclear Cells. , 2003, 214, 151-164.		1
93	Shikonin, a Component of Chinese Herbal Medicine, Inhibits Chemokine Receptor Function and Suppresses Human Immunodeficiency Virus Type 1. Antimicrobial Agents and Chemotherapy, 2003, 47, 2810-2816.	1.4	203
94	Tannic acid is an inhibitor of CXCL12 (SDF-1alpha)/CXCR4 with antiangiogenic activity. Clinical Cancer Research, 2003, 9, 3115-23.	3.2	64
95	Effects of Shuanghuanglian and Qingkailing, two multi-components of traditional Chinese medicinal preparations, on human leukocyte function. Life Sciences, 2002, 70, 2897-2913.	2.0	53
96	Regulatory effects of deoxycholic acid, a component of the anti-inflammatory traditional Chinese medicine Niuhuang, on human leukocyte response to chemoattractants. Biochemical Pharmacology, 2002, 63, 533-541.	2.0	33
97	Cellular pharmacology studies of shikonin derivatives. Phytotherapy Research, 2002, 16, 199-209.	2.8	362
98	Shikonin, a component of antiinflammatory Chinese herbal medicine, selectively blocks chemokine binding to CC chemokine receptor-1. International Immunopharmacology, 2001, 1, 229-236.	1.7	60
99	Characterization of chenodeoxycholic acid as an endogenous antagonist of the G-coupled formyl peptide receptors. Inflammation Research, 2000, 49, 744-755.	1.6	53
100	Differential Regulation of Responsiveness to fMLP and C5a Upon Dendritic Cell Maturation: Correlation with Receptor Expression. Journal of Immunology, 2000, 165, 2694-2702.	0.4	64
101	Human Treg cell suppressive assays. Protocol Exchange, 0, , .	0.3	1
102	Triptolide Attenuates Endotoxin- and Staphylococcal Exotoxin-Induced T-Cell Proliferation and Production of Cytokines and Chemokines. , 0, .		2