Jinbao Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3654139/publications.pdf

Version: 2024-02-01

		759233	580821
34	630	12	25
papers	citations	h-index	g-index
37	37	37	738
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hindered dialkyl ether synthesis with electrogenerated carbocations. Nature, 2019, 573, 398-402.	27.8	240
2	Nickel-Catalyzed Electrochemical Phosphorylation of Aryl Bromides. Organic Letters, 2019, 21, 6835-6838.	4.6	66
3	A Cascade Reaction Consisting of Pictetâ^'Spengler-Type Cyclization and Smiles Rearrangement:Â Application to the Synthesis of Novel Pyrrole-Fused Dihydropteridines. Organic Letters, 2007, 9, 765-767.	4.6	47
4	Synthesis of Pyrido[2,3-e]pyrrolo[1,2-a]pyrazine Derivatives via Tandem Iminium Cyclization and Smiles Rearrangement. Journal of Organic Chemistry, 2008, 73, 3281-3283.	3.2	28
5	Electroselective and Controlled Reduction of Cyclic Imides to Hydroxylactams and Lactams. Organic Letters, 2021, 23, 2298-2302.	4.6	27
6	Electrochemical Crossâ€Dehydrogenative Coupling of <i>N</i> êArylâ€tetrahydroisoquinolines with Phosphites and Indole. European Journal of Organic Chemistry, 2019, 2019, 2498-2501.	2.4	22
7	Discovery of Novel Tricyclic Thiazepine Derivatives as Anti-Drug-Resistant Cancer Agents by Combining Diversity-Oriented Synthesis and Converging Screening Approach. ACS Combinatorial Science, 2016, 18, 230-235.	3.8	18
8	Stereoselective Synthesis of 3-Carboxy-4,5-dihydropyrroles via an Intramolecular Iminium Ion Cyclization Reaction. Organic Letters, 2015, 17, 3818-3821.	4.6	15
9	Synthesis of highly substituted 2,3-dihydropyrimido [4,5-d]pyrimidin-4(1H)-ones from 4,6-dichloro-5-formylpyrimidine, amines and aldehydes. Molecular Diversity, 2011, 15, 839-847.	3.9	14
10	Electrochemical Regioselective Bromination of Electron-Rich Aromatic Rings Using n Bu4NBr. Synlett, 2019, 30, 1313-1316.	1.8	13
11	Modular and Stereoselective Approach to Highly Substituted Indole/Pyrrole-Fused Diazepanones. Journal of Organic Chemistry, 2021, 86, 6458-6466.	3.2	13
12	Synthesis of Novel 8,9-Dihydro-5H-pyrimido[4,5-e][1,4]diazepin-7(6H)-ones. ACS Combinatorial Science, 2010, 12, 503-509.	3.3	12
13	The Construction of Hydrangea-like Vanadium-Doped Iron Nickel Phosphide as an Enhanced Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Energy Materials, 2020, 3, 9449-9458.	5.1	12
14	Synthesis of novel 4H-pyrimido[1,6-a]pyrimidines via a one-pot three-component condensation. Molecular Diversity, 2012, 16, 173-181.	3.9	11
15	Stereochemistry as a Tool in Deciphering the Processes of a Tandem Iminium Cyclization and Smiles Rearrangement. Journal of Organic Chemistry, 2010, 75, 8147-8154.	3.2	10
16	Single-Electron Oxidation/Alterable C3- and C10-Arylation of 9-MeO-phenanthrene. Organic Letters, 2018, 20, 3591-3595.	4.6	10
17	Synthesis of Isoxazolidine-Fused Eight-Membered Heterocycles via an Intramolecular Nitrone–Alkene Cycloaddition. Synlett, 2015, 26, 238-242.	1.8	9
18	A one-pot procedure for ring enlargement of \hat{l}_{\pm} -chloromethylN-containing heterocycles. Journal of Heterocyclic Chemistry, 2006, 43, 321-324.	2.6	7

#	Article	IF	CITATIONS
19	Electronic Effects on the cis/trans Selectivity in Formation of Isoxazolidine-Fused Eight-Membered Ring via an Intramolecular Nitrone-Alkene Cycloaddition. Chemistry of Heterocyclic Compounds, 2016, 52, 601-608.	1.2	6
20	Intramolecular Cycloaddition of Azomethine Ylides Activated by Aromatic Rings: Scope and Limitations. Chemistry of Heterocyclic Compounds, 2016, 52, 484-492.	1.2	6
21	A Highly Stereocontrolled Intramolecular Cycloaddition Reaction of Azomethine Ylide Activated by a Pyrimidine Ring: Access to Novel Tricyclic Hexahydro-1H-pyrrolo[2′,3′:4,5]pyrido[2,3-d]pyrimidines. Synlett, 2012, 23, 585-588.	1.8	5
22	Iron and nitrogen co-functionalized porous 3D graphene frameworks as an efficient oxygen reduction catalyst. RSC Advances, 2016, 6, 74886-74894.	3.6	5
23	New electrotriggers: <i>p</i> -methoxycarbonylbenzyl (pMCB) as an electroremovable protecting group for carboxylic acids, phosphoric acids and alcohols. Green Chemistry, 2022, 24, 5632-5636.	9.0	5
24	Synthesis of pyrido [2,3-b] [1,4] benzoxazepines via a Friedelâ 'Crafts cyclization. Chemistry of Heterocyclic Compounds, 2016, 52, 326-330.	1.2	4
25	Synthesis and Evaluation of 2â€Alkylthioâ€4â€(<i>N</i> à€substituted sulfonamide)pyrimidine Hydroxamic Acids as Antiâ€myeloma Agents. Chemical Biology and Drug Design, 2016, 87, 472-477.	3.2	4
26	Diethyl Phosphite Promoted Electrochemical Oxidation of Tetrahydroisoquinolines to 3,4-Dihydroisoquinolin-1(2H)-ones. Synlett, 2019, 30, 2077-2080.	1.8	4
27	Direct C(sp ³)â€"H allylation of 2-alkylpyridines with Moritaâ€"Baylisâ€"Hillman carbonates via a tandem nucleophilic substitution/aza-Cope rearrangement. Beilstein Journal of Organic Chemistry, 2021, 17, 2505-2510.	2.2	4
28	Synthesis of novel tricyclic 4â€chloroâ€7,8,10,11â€tetrahydroâ€5 <i>H</i> à€benzo[<i>e</i>]pyrimido[4,5â€ <i>b</i>][1,4]diazepinâ€9(6 <i>Journal of Heterocyclic Chemistry, 2010, 47, 990-993.</i>	Hx¢i>)â€o	onæs.
29	Synthesis of novel 6,7â€dihydroâ€5 <i>H</i> à€pyrimido[4,5â€ <i>e</i>][1,4]diazepinâ€8(9 <i>H</i>)â€ones. Journ Heterocyclic Chemistry, 2011, 48, 1091-1094.	nal of 2.6	3
30	Highly selective electroreductive linear dimerization of electron-deficient vinylarenes. Tetrahedron, 2021, 102, 132535.	1.9	3
31	The discovery of kinase inhibitors by a combination of diversity-oriented synthesis and selective screening. MedChemComm, 2016, 7, 1946-1951.	3.4	2
32	Catalystâ€Controlled Regiodivergent Synthesis of α/βâ€Dipeptide Derivatives via <i>N</i> â€Allylic Alkylation of <i>Oâ€</i> Alkyl Hydroxamates with MBH Carbonates. Chemistry - an Asian Journal, 2022, 17, .	3.3	2
33	Trifluoroacetic Acid-Mediated Nucleophilic Substitution/Smiles Rearrangement Cascade Reaction: An Alternative Approach to Constructing Pyrrole-Fused Dihydropteridines. Chemistry of Heterocyclic Compounds, 2016, 52, 831-835.	1.2	O
34	CC102528: A Novel Histone Deacetylase Inhibitor in the Hydroxamate Family Demonstrates Potent Anti-Myeloma Activity Blood, 2009, 114, 4927-4927.	1.4	0