Zhongbao Jian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3653774/publications.pdf

Version: 2024-02-01

63 papers	2,156 citations	27 h-index	243610 44 g-index
63	63	63	940
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultrahigh Branching of Mainâ€Chainâ€Functionalized Polyethylenes by Inverted Insertion Selectivity. Angewandte Chemie - International Edition, 2020, 59, 14296-14302.	13.8	122
2	Recent advances in nickel mediated copolymerization of olefin with polar monomers. Coordination Chemistry Reviews, 2021, 435, 213802.	18.8	114
3	Living catalyzed-chain-growth polymerization and block copolymerization of isoprene by rare-earth metal allyl precursors bearing a constrained-geometry-conformation ligand. Chemical Communications, 2010, 46, 3022.	4.1	103
4	Suppression of Chain Transfer in Catalytic Acrylate Polymerization via Rapid and Selective Secondary Insertion. Journal of the American Chemical Society, 2015, 137, 2836-2839.	13.7	98
5	Pentiptycenyl Substituents in Insertion Polymerization with α-Diimine Nickel and Palladium Species. Organometallics, 2019, 38, 2075-2083.	2.3	92
6	A Lutetium Allyl Complex That Bears a Pyridylâ€Functionalized Cyclopentadienyl Ligand: Dual Catalysis on Highly Syndiospecific and <i>cis</i> â€1,4â€Selective (Co)Polymerizations of Styrene and Butadiene. Chemistry - A European Journal, 2010, 16, 14007-14015.	3.3	80
7	Insertion Homo―and Copolymerization of Diallyl Ether. Angewandte Chemie - International Edition, 2015, 54, 15845-15849.	13.8	74
8	Rareâ€Earthâ€Metal–Hydrocarbyl Complexes Bearing Linked Cyclopentadienyl or Fluorenyl Ligands: Synthesis, Catalyzed Styrene Polymerization, and Structure–Reactivity Relationship. Chemistry - A European Journal, 2012, 18, 2674-2684.	3.3	64
9	Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization. Angewandte Chemie - International Edition, 2016, 55, 14378-14383.	13.8	64
10	Unsymmetrical Strategy Makes Significant Differences in αâ€Diimine Nickel and Palladium Catalyzed Ethylene (Co)Polymerizations. ChemCatChem, 2020, 12, 2497-2505.	3.7	59
11	A concerted double-layer steric strategy enables an ultra-highly active nickel catalyst to access ultrahigh molecular weight polyethylenes. Journal of Catalysis, 2020, 390, 30-36.	6.2	54
12	Highly Regio- and Stereoselective Terpolymerization of Styrene, Isoprene and Butadiene with Lutetium-Based Coordination Catalyst. Macromolecules, 2011, 44, 7675-7681.	4.8	51
13	Efficient Suppression of Chain Transfer and Branching via <i>C</i> _s â€√ype Shielding in a Neutral Nickel(II) Catalyst. Angewandte Chemie - International Edition, 2021, 60, 4018-4022.	13.8	51
14	CO-Reduction Chemistry: Reaction of a CO-Derived Formylhydridoborate with Carbon Monoxide, with Carbon Dioxide, and with Dihydrogen. Journal of the American Chemical Society, 2017, 139, 6474-6483.	13.7	50
15	Combination of Ethylene, 1,3-Butadiene, and Carbon Dioxide into Ester-Functionalized Polyethylenes via Palladium-Catalyzed Coupling and Insertion Polymerization. Macromolecules, 2019, 52, 2504-2512.	4.8	46
16	Comprehensive studies of the ligand electronic effect on unsymmetrical α-diimine nickel(<scp>ii</scp>) promoted ethylene (co)polymerizations. Polymer Chemistry, 2020, 11, 4005-4012.	3.9	44
17	High-Performance Neutral Phosphine-Sulfonate Nickel(II) Catalysts for Efficient Ethylene Polymerization and Copolymerization with Polar Monomers. Organometallics, 2019, 38, 1118-1126.	2.3	43
18	Intramolecular C–H bond activation induced by a scandium terminal imido complex. Chemical Communications, 2012, 48, 7516.	4.1	40

#	Article	IF	Citations
19	Facile Access to Polar-Functionalized Ultrahigh Molecular Weight Polyethylene at Ambient Conditions. CCS Chemistry, 2022, 4, 1680-1694.	7.8	39
20	Selective branch formation in ethylene polymerization to access precise ethylene-propylene copolymers. Nature Communications, 2022, 13, 725.	12.8	39
21	Systematic Studies on (Co)Polymerization of Polar Styrene Monomers with Palladium Catalysts. Macromolecules, 2019, 52, 7197-7206.	4.8	35
22	Synthesis of linked half sandwich rare-earth metal chlorido and borohydrido complexes and their catalytic behavior towards MMA polymerization. Dalton Transactions, 2010, 39, 6871.	3.3	34
23	Custom-made polar monomers utilized in nickel and palladium promoted olefin copolymerization. Polymer Chemistry, 2021, 12, 3878-3892.	3.9	33
24	Heterocycle-Substituted Phosphinesulfonato Palladium(II) Complexes for Insertion Copolymerization of Methyl Acrylate. Organometallics, 2014, 33, 2879-2888.	2.3	29
25	Preparation and <i>in situ</i> chain-end-functionalization of branched ethylene oligomers by monosubstituted α-diimine nickel catalysts. Polymer Chemistry, 2019, 10, 2596-2607.	3.9	29
26	Comprehensive Picture of Functionalized Vinyl Monomers in Chain-Walking Polymerization. Macromolecules, 2020, 53, 8858-8866.	4.8	29
27	Tunable branching and living character in ethylene polymerization using "polyethylene glycol sandwich―α-diimine nickel catalysts. Polymer Chemistry, 2021, 12, 1236-1243.	3.9	29
28	Rare-earth metal bis(alkyl)s that bear a 2-pyridinemethanamine ligand: Dual catalysis of the polymerizations of both isoprene and ethylene. Dalton Transactions, 2012, 41, 2367.	3.3	27
29	Insertion Polymerization of Divinyl Formal. Macromolecules, 2016, 49, 4395-4403.	4.8	27
30	Polar Additive Triggered Branching Switch and Block Polyolefin Topology in Living Ethylene Polymerization. Macromolecules, 2021, 54, 3191-3196.	4.8	27
31	Suppression of Chain Transfer at High Temperature in Catalytic Olefin Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
32	Horizontally and Vertically Concerted Steric Strategy in <scp>αâ€Diimine</scp> Nickel Promoted Ethylene (Co)Polymerization ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2829-2836.	4.9	26
33	Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization. Angewandte Chemie, 2016, 128, 14590-14595.	2.0	25
34	Ultrahigh Branching of Mainâ€Chainâ€Functionalized Polyethylenes by Inverted Insertion Selectivity. Angewandte Chemie, 2020, 132, 14402-14408.	2.0	25
35	Insights into Functionalâ€Groupâ€Tolerant Polymerization Catalysis with Phosphine–Sulfonamide Palladium(II) Complexes. Chemistry - A European Journal, 2015, 21, 2062-2075.	3.3	24
36	Sterically very bulky aliphatic/aromatic phosphine-sulfonate palladium catalysts for ethylene polymerization and copolymerization with polar monomers. Polymer Chemistry, 2019, 10, 546-554.	3.9	24

#	Article	IF	Citations
37	Short-Chain Branched Polar-Functionalized Linear Polyethylene via "Tandem Catalysis― Macromolecules, 2016, 49, 4057-4066.	4.8	23
38	Systematic studies on dibenzhydryl and pentiptycenyl substituted pyridine-imine nickel(ii) mediated ethylene polymerization. Dalton Transactions, 2020, 49, 4824-4833.	3.3	23
39	Insertion Homo―and Copolymerization of Diallyl Ether. Angewandte Chemie, 2015, 127, 16071-16075.	2.0	22
40	Heteroaryl Backbone Strategy in Bisphosphine Monoxide Palladium-Catalyzed Ethylene Polymerization and Copolymerization with Polar Monomers. Organometallics, 2019, 38, 2990-2997.	2.3	22
41	A N-bridged strategy enables hemilabile phosphine–carbonyl palladium and nickel catalysts to mediate ethylene polymerization and copolymerization with polar vinyl monomers. Polymer Chemistry, 2020, 11, 6187-6193.	3.9	22
42	Synthesis and properties investigation of hydroxyl functionalized polyisoprene prepared by cobalt catalyzed co-polymerization of isoprene and hydroxylmyrcene. Polymer Chemistry, 2020, 11, 2034-2043.	3.9	22
43	Coordination–insertion polymerization of polar allylbenzene monomers. Polymer Chemistry, 2019, 10, 1912-1919.	3.9	21
44	Influence of initiating groups on phosphino-phenolate nickel catalyzed ethylene (co)polymerization. Dalton Transactions, 2020, 49, 2636-2644.	3.3	21
45	Direct Synthesis of Imidazolium-Functional Polyethylene by Insertion Copolymerization. Macromolecular Rapid Communications, 2016, 37, 934-938.	3.9	20
46	An Unusual Organoyttrium Alkyl Complex Containing a [C ₅ HMe ₃ (Î ^{3â€CH₂)â€C₅H₄N†Ligand and an Elusive Cyclopentadienideâ€Based Scandium Tuckâ€Over Zwitterion Obtained by CH Bond Activation. Chemistry - A European Journal, 2011, 17, 14578-14585.}	Ĵº] ⟨syp>â	``< sup>
47	2-Phosphine-pyridine-N-oxide palladium and nickel catalysts for ethylene polymerization and copolymerization with polar monomers. Polymer, 2020, 194, 122410.	3.8	18
48	A comprehensive picture on catalyst structure construction in palladium catalyzed ethylene (co)polymerizations. Journal of Catalysis, 2020, 383, 215-220.	6.2	15
49	Fluorinated αâ€Diimine Nickel Mediated Ethylene (Co)Polymerization. Chemistry - A European Journal, 2021, 27, 11935-11942.	3.3	15
50	Indole-bridged bisphosphine-monoxide palladium catalysts for ethylene polymerization and copolymerization with polar monomers. Polymer Chemistry, 2020, 11, 2740-2748.	3.9	14
51	A readily available neutral nickel catalyst for accessing linear ultrahigh molecular weight polyethylene in a living manner. Journal of Catalysis, 2021, 400, 332-337.	6.2	13
52	Suppression of Chain Transfer and Promotion of Chain Propagation in Neutral Anilinotropone Nickel Polymerization Catalysis. Macromolecules, 2022, 55, 2533-2541.	4.8	13
53	Exploring steric effect of electron-donating group in palladium and nickel mediated ethylene polymerization and copolymerization with polar monomers. European Polymer Journal, 2021, 160, 110781.	5.4	12
54	Palladium Promoted Copolymerization of Carbon Monoxide with Polar or Non-polar Olefinic Monomers. Current Organic Chemistry, 2021, 25, 287-300.	1.6	11

#	Article	IF	CITATIONS
55	Positive Effect of Polar Solvents in Olefin Polymerization Catalysis. Macromolecules, 2022, 55, 5441-5447.	4.8	10
56	Strategies cooperation on designing nickel catalysts to access ultrahigh molecular weight polyethylenes. Polymer, 2022, 240, 124478.	3.8	9
57	Formation of borata-alkene/iminium zwitterions by ynamine hydroboration. Dalton Transactions, 2018, 47, 10853-10856.	3.3	8
58	A comprehensive study on highly active pentiptycenyl-substituted bis(imino)pyridyl iron(II) mediated ethylene polymerization. European Polymer Journal, 2020, 128, 109605.	5.4	8
59	Slow-chain-walking polymerization of ethylene and highly chain-straightening polymerization of 1-hexene to access semicrystalline polyolefins. European Polymer Journal, 2022, 166, 111022.	5.4	7
60	Efficient Suppression of Chain Transfer and Branching via C s â€√ype Shielding in a Neutral Nickel(II) Catalyst. Angewandte Chemie, 2021, 133, 4064-4068.	2.0	5
61	Zirconocene mediated acetylboron chemistry. Chemical Communications, 2018, 54, 5724-5727.	4.1	4
62	Enhancement on Nickel-Mediated Ethylene Polymerization by Concerted Steric Hindrance and Fluorine Effect. Acta Chimica Sinica, 2022, 80, 741.	1.4	2
63	Suppression of Chain Transfer at High Temperature in Catalytic Olefin Polymerization. Angewandte Chemie, 0, , .	2.0	1