Gianluca Grimaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3653529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids. ACS Nano, 2021, 15, 377-386.	14.6	22
2	Grain Size Influences Activation Energy and Migration Pathways in MAPbBr ₃ Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 2423-2428.	4.6	71
3	Accelerated Hot-Carrier Cooling in MAPbI ₃ Perovskite by Pressure-Induced Lattice Compression. Journal of Physical Chemistry Letters, 2021, 12, 4118-4124.	4.6	8
4	Microstructuring of 2D perovskites via ion-exchange fabrication. Applied Physics Letters, 2021, 119, 223102.	3.3	3
5	Reduced Barrier for Ion Migration in Mixed-Halide Perovskites. ACS Applied Energy Materials, 2021, 4, 13431-13437.	5.1	16
6	Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation. Advanced Materials Interfaces, 2020, 7, 1901600.	3.7	23
7	Quantitative electrochemical control over optical gain in colloidal quantum-dot and quantum-well solids. , 2020, , .		2
8	Electrochemical Modulation of the Photophysics of Surface-Localized Trap States in Core/Shell/(Shell) Quantum Dot Films. Chemistry of Materials, 2019, 31, 8484-8493.	6.7	35
9	Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots. Nano Letters, 2019, 19, 3002-3010.	9.1	72
10	Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange. Journal of Physical Chemistry C, 2019, 123, 29599-29608.	3.1	8
11	Model To Determine a Distinct Rate Constant for Carrier Multiplication from Experiments. ACS Applied Energy Materials, 2019, 2, 721-728.	5.1	4
12	Asymmetric Optical Transitions Determine the Onset of Carrier Multiplication in Lead Chalcogenide Quantum Confined and Bulk Crystals. ACS Nano, 2018, 12, 4796-4802.	14.6	16
13	Highly Photoconductive InP Quantum Dots Films and Solar Cells. ACS Applied Energy Materials, 2018, 1, 6569-6576.	5.1	40
14	Spectroelectrochemical Signatures of Surface Trap Passivation on CdTe Nanocrystals. Chemistry of Materials, 2018, 30, 8052-8061.	6.7	44
15	Finding and Fixing Traps in Il–VI and Ill–V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation. Journal of the American Chemical Society, 2018, 140, 15712-15723.	13.7	166
16	Selective antimony reduction initiating the nucleation and growth of InSb quantum dots. Nanoscale, 2018, 10, 11110-11116.	5.6	11
17	Hot-electron transfer in quantum-dot heterojunction films. Nature Communications, 2018, 9, 2310.	12.8	48
18	Ultrafast Charge Transfer and Upconversion in Zinc βâ€Tetraaminophthalocyanineâ€Functionalized PbS Nanostructures Probed by Transient Absorption Spectroscopy. Angewandte Chemie - International Edition, 2017, 56, 14061-14065.	13.8	12

#	Article	IF	CITATIONS
19	Ultrafast Charge Transfer and Upconversion in Zinc βâ€Tetraaminophthalocyanineâ€Functionalized PbS Nanostructures Probed by Transient Absorption Spectroscopy. Angewandte Chemie, 2017, 129, 14249-14253.	2.0	6
20	Tunable Quantum Confinement in Ultrathin, Optically Active Semiconductor Nanowires Via Reverseâ€Reaction Growth. Advanced Materials, 2015, 27, 2195-2202.	21.0	50
21	Crystal Phase Quantum Dots in the Ultrathin Core of GaAs–AlGaAs Core–Shell Nanowires. Nano Letters, 2015, 15, 7544-7551.	9.1	47