Rosa Maria Sanchez Casas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3653452/publications.pdf

Version: 2024-02-01

		1163117	940533
17	403	8	16
papers	citations	h-index	g-index
17	17	17	813
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clinical Symptoms of Arboviruses in Mexico. Pathogens, 2020, 9, 964.	2.8	9
2	Zika, dengue and yellow fever viruses induce differential anti-viral immune responses in human monocytic and first trimester trophoblast cells. Antiviral Research, 2018, 151, 55-62.	4.1	40
3	Evidence of DENV-2 Vertical Transmission in LarvalAedes aegyptiPopulations at Cancun, Quintana Roo, Mexico. Southwestern Entomologist, 2016, 41, 389-398.	0.2	4
4	Global genetic diversity of <i>Aedes aegypti</i> . Molecular Ecology, 2016, 25, 5377-5395.	3.9	195
5	Mammalophilic feeding behaviour of <i>Culex quinquefasciatus</i> mosquitoes collected in the cities of Chetumal and Cancun, Yucatán Peninsula, Mexico. Tropical Medicine and International Health, 2015, 20, 1488-1491.	2.3	21
6	Chikungunya Virus as Cause of Febrile Illness Outbreak, Chiapas, Mexico, 2014. Emerging Infectious Diseases, 2015, 21, 2070-2073.	4.3	44
7	First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1325-1329.	1.4	42
8	LADES: A Software for Constructing and Analyzing Longitudinal Designs in Biomedical Research. PLoS ONE, 2014, 9, e100570.	2.5	О
9	Natural Transmission of Dengue Virus by Aedes albopictus at Monterrey, Northeastern Mexico. Southwestern Entomologist, 2014, 39, 459.	0.2	11
10	Detection of Aedes aegypti Mosquitoes Infected with Dengue Virus as a Complementary Method for Increasing the Sensitivity of Surveillance: Identification of Serotypes 1, 2, and 4 by RT-PCR in Quintana Roo, Mexico. Southwestern Entomologist, 2014, 39, 307-316.	0.2	4
11	Aedes aegyptiMosquitoes at Nonresidential Sites Might be Related to Transmission of Dengue Virus in Monterrey, Northeastern Mexico. Southwestern Entomologist, 2013, 38, 465-476.	0.2	5
12	Potential Community-Based Control by Use of Plastic Film to Block <i>Aedes aegypti</i> (L.) Egg Adhesion. Southwestern Entomologist, 2013, 38, 605-614.	0.2	2
13	West Nile Virus Survey of Birds, Horses, and Mosquitoes of the Pacific Coast, Southern Mexico. Southwestern Entomologist, 2013, 38, 231-240.	0.2	4
14	Detection of Dengue Virus Serotype 2 inAedes aegyptiin Quintana Roo, Mexico, 2011. Southwestern Entomologist, 2013, 38, 109-117.	0.2	7
15	Risks of Dengue Secondary Infective Biting Associated withAedes aegyptiin Home Environments in Monterrey, Mexico. Southwestern Entomologist, 2013, 38, 99-108.	0.2	1
16	Field Evaluation of a Novel Trap Baited with Carbon Dioxide Produced by Yeast for the Collection of Female <i>Aedes aegypti</i> Mosquitoes in Mexico. Southwestern Entomologist, 2012, 37, 495-504.	0.2	2
17	Detection of West Nile virusâ€specific antibodies and nucleic acid in horses and mosquitoes, respectively, in Nuevo Leon State, northern Mexico, 2006–2007. Medical and Veterinary Entomology, 2012, 26, 351-354.	1.5	12