Phillip Cassey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3653106/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution, 2005, 20, 223-228.	8.7	1,964
2	Alien species as a driver of recent extinctions. Biology Letters, 2016, 12, 20150623.	2.3	835
3	Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5460-5465.	7.1	780
4	Avian Extinction and Mammalian Introductions on Oceanic Islands. Science, 2004, 305, 1955-1958.	12.6	681
5	The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions, 2009, 15, 904-910.	4.1	495
6	Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology and Evolution, 2017, 1, .	7.8	315
7	ALLOMETRIC EXPONENTS DO NOT SUPPORT A UNIVERSAL METABOLIC ALLOMETRY. Ecology, 2007, 88, 315-323.	3.2	215
8	The influence of numbers on invasion success. Molecular Ecology, 2015, 24, 1942-1953.	3.9	196
9	Clobal patterns of introduction effort and establishment success in birds. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S405-8.	2.6	184
10	When pets become pests: the role of the exotic pet trade in producing invasive vertebrate animals. Frontiers in Ecology and the Environment, 2019, 17, 323-330.	4.0	159
11	Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biology, 2018, 16, e2005987.	5.6	156
12	The role of species traits in the establishment success of exotic birds. Global Change Biology, 2009, 15, 2852-2860.	9.5	146
13	Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. Journal of Animal Ecology, 2006, 75, 1426-1439.	2.8	131
14	The Global Distribution and Drivers of Alien Bird Species Richness. PLoS Biology, 2017, 15, e2000942.	5.6	126
15	Influences on the transport and establishment of exotic bird species: an analysis of the parrots (Psittaciformes) of the world. Global Change Biology, 2004, 10, 417-426.	9.5	125
16	Where did all the pangolins go? International CITES trade in pangolin species. Global Ecology and Conservation, 2016, 8, 241-253.	2.1	119
17	Remoteness promotes biological invasions on islands worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9270-9275.	7.1	114
18	The modelling of avian visual perception predicts behavioural rejection responses to foreign egg colours. Biology Letters, 2008, 4, 515-517.	2.3	113

#	Article	IF	CITATIONS
19	Effects of sampling effort on biodiversity patterns estimated from environmental DNA metabarcoding surveys. Scientific Reports, 2018, 8, 8843.	3.3	113
20	Facultative primary sex ratio variation: a lack of evidence in birds?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1277-1282.	2.6	106
21	Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170799.	2.6	104
22	ls sexual selection blurring the functional significance of eggshell coloration hypotheses?. Animal Behaviour, 2009, 78, 209-215.	1.9	98
23	FUNCTIONAL DIVERSITY OF MAMMALIAN PREDATORS AND EXTINCTION IN ISLAND BIRDS. Ecology, 2005, 86, 2916-2923.	3.2	94
24	The repeatability of metabolic rate declines with time. Journal of Experimental Biology, 2013, 216, 1763-5.	1.7	89
25	Review: an embryo's eye view of avian eggshell pigmentation. Journal of Avian Biology, 2011, 42, 494-504.	1.2	87
26	Diversity, biogeography and the global flows of alien amphibians and reptiles. Diversity and Distributions, 2017, 23, 1313-1322.	4.1	87
27	Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1449-1457.	2.6	84
28	Establishment of exotic parasites: the origins and characteristics of an avian malaria community in an isolated island avifauna. Ecology Letters, 2012, 15, 1112-1119.	6.4	75
29	Eggshell colour does not predict measures of maternal investment in eggs of Turdus thrushes. Die Naturwissenschaften, 2008, 95, 713-721.	1.6	74
30	Concerning invasive species: Reply to Brown and Sax. Austral Ecology, 2005, 30, 475-480.	1.5	68
31	On the island biogeography of aliens: a global analysis of the richness of plant and bird species on oceanic islands. Clobal Ecology and Biogeography, 2016, 25, 859-868.	5.8	67
32	A shared chemical basis of avian host–parasite egg colour mimicry. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1068-1076.	2.6	65
33	Life history and ecology influences establishment success of introduced land birds. Biological Journal of the Linnean Society, 2002, 76, 465-480.	1.6	64
34	Reproducibility and Repeatability in Ecology. BioScience, 2006, 56, 958.	4.9	63
35	Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biological Journal of the Linnean Society, 2012, 106, 657-672.	1.6	63
36	Mistakes in the analysis of exotic species establishment: source pool designation and correlates of introduction success among parrots (Aves: Psittaciformes) of the world. Journal of Biogeography, 2004, 31, 277-284.	3.0	61

#	Article	IF	CITATIONS
37	The island biogeography of exotic bird species. Global Ecology and Biogeography, 2008, 17, 246-251.	5.8	61
38	First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Functional Ecology, 2015, 29, 209-218.	3.6	58
39	Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota, 0, 67, 511-550.	1.0	58
40	Deep learning for environmental conservation. Current Biology, 2019, 29, R977-R982.	3.9	57
41	Implantation reduces the negative effects of bio-logging devices on birds. Journal of Experimental Biology, 2013, 216, 537-42.	1.7	56
42	An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere, 2016, 7, e01238.	2.2	55
43	Experimentally Constrained Virulence is Costly for Common Cuckoo Chicks. Ethology, 2009, 115, 14-22.	1.1	54
44	Repeatability of Foreign Egg Rejection: Testing the Assumptions of Co-Evolutionary Theory. Ethology, 2011, 117, 606-619.	1.1	54
45	Lessons from the establishment of exotic species: a meta-analytical case study using birds. Journal of Animal Ecology, 2005, 74, 250-258.	2.8	53
46	Condition dependence of nestling mouth colour and the effect of supplementing carotenoids on parental behaviour in the hihi (Notiomystis cincta). Oecologia, 2008, 157, 361-368.	2.0	53
47	The cost of virulence: an experimental study of egg eviction by brood parasitic chicks. Behavioral Ecology, 2009, 20, 1138-1146.	2.2	53
48	How avian incubation behaviour influences egg surface temperatures: relationships with egg position, development and clutch size. Journal of Avian Biology, 2012, 43, 289-296.	1.2	53
49	Host responses to interspecific brood parasitism: a by-product of adaptations to conspecific parasitism?. Frontiers in Zoology, 2014, 11, 34.	2.0	53
50	Understanding the biological invasion risk posed by the global wildlife trade: propagule pressure drives the introduction and establishment of Nearctic turtles. Global Change Biology, 2015, 21, 1078-1091.	9.5	53
51	Propagule pressure as a driver of establishment success in deliberately introduced exotic species: fact or artefact?. Biological Invasions, 2013, 15, 1459-1469.	2.4	51
52	Not so colourful after all: eggshell pigments constrain avian eggshell colour space. Biology Letters, 2015, 11, 20150087.	2.3	51
53	Are avian eggshell colours effective intraspecific communication signals in the Muscicapoidea? A perceptual modelling approach. Ibis, 2009, 151, 689-698.	1.9	48
54	Variability in Avian Eggshell Colour: A Comparative Study of Museum Eggshells. PLoS ONE, 2010, 5, e12054.	2.5	48

#	Article	IF	CITATIONS
55	Egg Eviction Imposes a Recoverable Cost of Virulence in Chicks of a Brood Parasite. PLoS ONE, 2009, 4, e7725.	2.5	47
56	Ecological and economic benefits to cattle rangelands of restoring an apex predator. Journal of Applied Ecology, 2015, 52, 455-466.	4.0	45
57	A global analysis of the determinants of alien geographical range size in birds. Global Ecology and Biogeography, 2016, 25, 1346-1355.	5.8	43
58	Spatial scale and evolutionary history determine the degree of taxonomic homogenization across island bird assemblages. Diversity and Distributions, 2007, 13, 458-466.	4.1	42
59	Neurophysiological response selectivity for conspecific songs over synthetic sounds in the auditory forebrain of non-singing female songbirds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 765-774.	1.6	42
60	High accuracy at low frequency: detailed behavioural classification from accelerometer data. Journal of Experimental Biology, 2018, 221, .	1.7	42
61	Integrating transport pressure data and species distribution models to estimate invasion risk for alien stowaways. Ecography, 2018, 41, 635-646.	4.5	42
62	A Y-chromosome shredding gene drive for controlling pest vertebrate populations. ELife, 2019, 8, .	6.0	42
63	Patterns of non-randomness in the composition and characteristics of the Taiwanese bird trade. Biological Invasions, 2014, 16, 2563-2575.	2.4	41
64	Taking a stand against illegal wildlife trade: the Zimbabwean approach to pangolin conservation. Oryx, 2017, 51, 280-285.	1.0	41
65	INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species. Management of Biological Invasions, 2016, 7, 131-139.	1.2	41
66	Biological invasions and natural colonisations are different – the need for invasion science. NeoBiota, 0, 31, 87-98.	1.0	41
67	Determining variation in the success of New Zealand land birds. Clobal Ecology and Biogeography, 2001, 10, 161-172.	5.8	40
68	Detecting pigments from colourful eggshells of extinct birds. Chemoecology, 2010, 20, 43-48.	1.1	40
69	Going Cheap: Determinants of Bird Price in the Taiwanese Pet Market. PLoS ONE, 2015, 10, e0127482.	2.5	40
70	A guide to using the internet to monitor and quantify the wildlife trade. Conservation Biology, 2021, 35, 1130-1139.	4.7	40
71	Maternally invested carotenoids compensate costly ectoparasitism in the hihi. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12798-12802.	7.1	39
72	A survey of publication bias within evolutionary ecology. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S451-4.	2.6	38

#	Article	IF	CITATIONS
73	Predictors of contraction and expansion of area of occupancy for British birds. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140744.	2.6	38
74	On the relationship between T ell mediated immunity in bird species and the establishment success of introduced populations. Journal of Animal Ecology, 2004, 73, 1035-1042.	2.8	37
75	Condition-dependent strategies of eggshell pigmentation: an experimental study of Japanese quail (<i>Coturnix coturnix japonica</i>). Journal of Experimental Biology, 2013, 216, 700-8.	1.7	37
76	Functional response: rigorous estimation and sensitivity to genetic variation in prey. Oikos, 2005, 111, 479-487.	2.7	36
77	A population model for predicting the successful establishment of introduced bird species. Oecologia, 2014, 175, 417-428.	2.0	35
78	Experience dependence of neural responses to different classes of male songs in the primary auditory forebrain of female songbirds. Behavioural Brain Research, 2013, 243, 184-190.	2.2	34
79	The Illegal Wildlife Trade Is a Likely Source of Alien Species. Conservation Letters, 2017, 10, 690-698.	5.7	34
80	Interspecies variation in yolk selenium concentrations among eggs of free-living birds: The effect of phylogeny. Journal of Trace Elements in Medicine and Biology, 2006, 20, 155-160.	3.0	33
81	Patterns of nonâ€randomness in the exotic avifauna of Florida. Diversity and Distributions, 2007, 13, 519-526.	4.1	32
82	Impact of time since collection on avian eggshell color: a comparison of museum and fresh egg specimens. Behavioral Ecology and Sociobiology, 2010, 64, 1711-1720.	1.4	32
83	Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species. Journal of the Royal Society Interface, 2011, 8, 1654-1664.	3.4	32
84	Avian eggshell pigments are not consistently correlated with colour measurements or egg constituents in two <i>Turdus</i> thrushes. Journal of Avian Biology, 2012, 43, 503-512.	1.2	32
85	A comparison of indices and measured values of eggshell thickness of different shell regions using museum eggs of 230 European bird species. Ibis, 2012, 154, 714-724.	1.9	32
86	Transnational environmental crime threatens sustainable development. Nature Sustainability, 2019, 2, 784-786.	23.7	32
87	The influence of spatial resolution on macroecological patterns of range size variation: a case study using parrots (Aves: Psittaciformes) of the world. Journal of Biogeography, 2004, 31, 285-293.	3.0	31
88	Tests of ecogeographical relationships in a non-native species: what rules avian morphology?. Oecologia, 2016, 181, 783-793.	2.0	31
89	The wildlife pet trade as a driver of introduction and establishment in alien birds in Taiwan. Biological Invasions, 2016, 18, 215-229.	2.4	31
90	Meta-analysis reveals that resting metabolic rate is not consistently related to fitness and performance in animals. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 1097-1110.	1.5	31

#	Article	lF	CITATIONS
91	Clarifying marine invasions with molecular markers: an illustration based on mtDNA from mistaken calyptraeid gastropod identifications. Biological Invasions, 2008, 10, 51-57.	2.4	30
92	Passerine introductions to New Zealand support a positive effect of propagule pressure on establishment success. Biodiversity and Conservation, 2011, 20, 2189-2199.	2.6	30
93	Nesting behaviour influences species-specific gas exchange across avian eggshells. Journal of Experimental Biology, 2014, 217, 3326-3332.	1.7	30
94	Long after the event, or four things we (should) know about bird invasions. Journal of Ornithology, 2015, 156, 15-25.	1.1	30
95	The global distribution of avian eggshell colours suggest a thermoregulatory benefit of darker pigmentation. Nature Ecology and Evolution, 2020, 4, 148-155.	7.8	30
96	The varying role of population abundance in structuring indices of biotic homogenization. Journal of Biogeography, 2008, 35, 884-892.	3.0	29
97	Evolution of extreme-mating behaviour: patterns of extrapair paternity in a species with forced extrapair copulation. Behavioral Ecology and Sociobiology, 2013, 67, 963-972.	1.4	29
98	Physical attractiveness, constraints to the trade and handling requirements drive the variation in species availability in the Australian cagebird trade. Ecological Economics, 2017, 131, 407-413.	5.7	29
99	Eggshell spot scoring methods cannot be used as a reliable proxy to determine pigment quantity. Journal of Avian Biology, 2014, 45, 94-102.	1.2	28
100	Leaky doors: Private captivity as a prominent source of bird introductions in Australia. PLoS ONE, 2017, 12, e0172851.	2.5	28
101	A stochastic model for integrating changes in species richness and community similarity across spatial scales. Oikos, 2006, 115, 207-218.	2.7	27
102	â€~Do you come from a land down under?' Characteristics of the international trade in Australian endemic parrots. Biological Conservation, 2017, 207, 38-46.	4.1	27
103	Management Policies for Invasive Alien Species: Addressing the Impacts Rather than the Species. BioScience, 2021, 71, 174-185.	4.9	27
104	Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics. Journal of the Royal Society Interface, 2015, 12, 20141184.	3.4	26
105	Improved surveillance for early detection of a potential invasive species: the alien Rose-ringed parakeet Psittacula krameri in Australia. Biological Invasions, 2017, 19, 1273-1284.	2.4	26
106	Colonization pressure: a second null model for invasion biology. Biological Invasions, 2020, 22, 1221-1233.	2.4	26
107	Causes of exotic bird establishment across oceanic islands. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2059-2063.	2.6	25
108	Postcopulatory mechanisms of inbreeding avoidance in the island endemic hihi (Notiomystis cincta). Behavioral Ecology, 2012, 23, 278-284.	2.2	25

#	Article	IF	CITATIONS
109	Ecological predictors of reduced avian reproductive investment in the southern hemisphere. Ecography, 2013, 36, 809-818.	4.5	25
110	Persistence of Low Pathogenic Influenza A Virus in Water: A Systematic Review and Quantitative Meta-Analysis. PLoS ONE, 2016, 11, e0161929.	2.5	25
111	Egg carotenoids in passerine birds introduced to New Zealand: relations to ecological factors, integument coloration and phylogeny. Functional Ecology, 2005, 19, 719-726.	3.6	24
112	Biological Optics: Seeing Colours in the Dark. Current Biology, 2009, 19, R1083-R1084.	3.9	24
113	Signatures of selection in a recent invasion reveal adaptive divergence in a highly vagile invasive species. Molecular Ecology, 2021, 30, 1419-1434.	3.9	24
114	Predicting the rate of oxygen consumption from heart rate in barnacle geese <i>Branta leucopsis</i> : effects of captivity and annual changes in body condition. Journal of Experimental Biology, 2009, 212, 2941-2948.	1.7	23
115	Reconstructing past species assemblages reveals the changing patterns and drivers of extinction through time. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4024-4032.	2.6	23
116	Parents, predators, parasites, and the evolution of eggshell colour in open nesting birds. Evolutionary Ecology, 2013, 27, 593-617.	1.2	23
117	Prescribed burning impacts avian diversity and disadvantages woodland-specialist birds unless long-unburnt habitat is retained. Biological Conservation, 2017, 215, 268-276.	4.1	23
118	Are there body size implications for the success of globally introduced land birds?. Ecography, 2001, 24, 413-420.	4.5	23
119	Nest site selection by yellow-faced honeyeaters Lichenostomus chrysops. Journal of Avian Biology, 2003, 34, 267-274.	1.2	22
120	Conspicuous Eggs and Colourful Hypotheses: Testing the Role of Multiple Influences on Avian Eggshell Appearance. Avian Biology Research, 2011, 4, 185-195.	0.9	22
121	Consistent feeding positions of great tit parents. Animal Behaviour, 2006, 72, 1249-1257.	1.9	21
122	Sources of variation in reflectance spectrophotometric data: a quantitative analysis using avian eggshell colours. Methods in Ecology and Evolution, 2012, 3, 450-456.	5.2	21
123	Escaping captivity: The biological invasion risk from vertebrate species in zoos. Biological Conservation, 2015, 181, 18-26.	4.1	21
124	Eggshell pigment composition covaries with phylogeny butÂnot with life history or with nesting ecology traits of British passerines. Ecology and Evolution, 2016, 6, 1637-1645.	1.9	21
125	Capturing expert uncertainty in spatial cumulative impact assessments. Scientific Reports, 2018, 8, 1469.	3.3	21
126	Publication rejection among ecologists. Trends in Ecology and Evolution, 2003, 18, 375-376.	8.7	20

#	Article	IF	CITATIONS
127	Eggshell Permeability: A Standard Technique for Determining Interspecific Rates of Water Vapor Conductance. Physiological and Biochemical Zoology, 2010, 83, 1023-1031.	1.5	20
128	Scaling of cerebral blood perfusion in primates and marsupials. Journal of Experimental Biology, 2015, 218, 2631-40.	1.7	20
129	Functional traits in red flour beetles: the dispersal phenotype is associated with leg length but not body size nor metabolic rate. Functional Ecology, 2017, 31, 653-661.	3.6	20
130	Pest demography critically determines the viability of synthetic gene drives for population control. Mathematical Biosciences, 2018, 305, 160-169.	1.9	20
131	Species–Area Relationships in Alien Species: Pattern and Process. , 2021, , 133-154.		20
132	DAMA: the global Distribution of Alien Mammals database. Ecology, 2021, 102, e03474.	3.2	20
133	Gene drives for vertebrate pest control: Realistic spatial modelling of eradication probabilities and times for island mouse populations. Molecular Ecology, 2022, 31, 1907-1923.	3.9	20
134	Managing the risk of exotic vertebrate incursions in Australia. Wildlife Research, 2011, 38, 501.	1.4	19
135	Egg arrangement in avian clutches covaries with the rejection of foreign eggs. Animal Cognition, 2013, 16, 819-828.	1.8	19
136	Assessing programs for monitoring threatened species - a tale of three honeyeaters (Meliphagidae). Wildlife Research, 2003, 30, 427.	1.4	18
137	European rabbit survival and recruitment are linked to epidemiological and environmental conditions in their exotic range. Austral Ecology, 2012, 37, 945-957.	1.5	18
138	A Potential Metric of the Attractiveness of Bird Song to Humans. Ethology, 2014, 120, 305-312.	1.1	18
139	Temporal modelling of ballast water discharge and ship-mediated invasion risk to Australia. Royal Society Open Science, 2015, 2, 150039.	2.4	18
140	Patterns of selectivity in introductions of mammal species worldwide. NeoBiota, 0, 33, 33-51.	1.0	18
141	Transport pathways shape the biogeography of alien freshwater fishes in Australia. Diversity and Distributions, 2018, 24, 1405-1415.	4.1	17
142	Live reptile smuggling is predicted by trends in the legal exotic pet trade. Conservation Letters, 2021, 14, e12833.	5.7	17
143	Publication and Rejection among Successful Ecologists. BioScience, 2004, 54, 234.	4.9	16
144	A general model for alien species richness. Biological Invasions, 2019, 21, 2665-2677.	2.4	16

#	Article	IF	CITATIONS
145	Australia's wish list of exotic pets: biosecurity and conservation implications of desired alien and illegal pet species. NeoBiota, 0, 60, 43-59.	1.0	16
146	Eggshell Conspicuousness in Ground Nesting Birds: Do Conspicuous Eggshells Signal Nest Location to Conspecifics?. Avian Biology Research, 2013, 6, 147-156.	0.9	15
147	Blood flow for bone remodelling correlates with locomotion in living and extinct birds. Journal of Experimental Biology, 2014, 217, 2956-62.	1.7	15
148	Visual scoring of eggshell patterns has poor repeatability. Journal of Ornithology, 2014, 155, 701-706.	1.1	15
149	Patterns of transport and introduction of exotic amphibians in Australia. Diversity and Distributions, 2014, 20, 455-466.	4.1	15
150	High adaptive variability and virus-driven selection on major histocompatibility complex (MHC) genes in invasive wild rabbits in Australia. Biological Invasions, 2017, 19, 1255-1271.	2.4	15
151	Managing the risk of wildlife disease introduction: pathwayâ€level biosecurity for preventing the introduction of alien ranaviruses. Journal of Applied Ecology, 2017, 54, 234-241.	4.0	15
152	New aliens in Australia: 18 years of vertebrate interceptions. Wildlife Research, 2020, 47, 55.	1.4	15
153	Eggshell Appearance Does Not Signal Maternal Corticosterone Exposure in Japanese Quail: An Experimental Study with Brown-Spotted Eggs. PLoS ONE, 2013, 8, e80485.	2.5	15
154	Capsaicin as a Deterrent Against Introduced Mammalian Nest Predators. Wilson Journal of Ornithology, 2012, 124, 518-524.	0.2	14
155	Interannual repeatability of eggshell phenotype in individual female Common Murres (Uriaaalge). Canadian Journal of Zoology, 2019, 97, 385-391.	1.0	14
156	Ant interceptions reveal roles of transport and commodity in identifying biosecurity risk pathways into Australia. NeoBiota, 0, 53, 1-24.	1.0	14
157	Body size trends in a Holocene island bird assemblage. Ecography, 2004, 27, 59-67.	4.5	13
158	Comparison of micrometer- and scanning electron microscope-based measurements of avian eggshell thickness. Journal of Field Ornithology, 2010, 81, 402-410.	0.5	13
159	Interpreting the Lists and Equations of Egg Dimensions in Schönwetter's <i>Handbuch Der Oologie</i> . Auk, 2010, 127, 940-947.	1.4	13
160	2. The Biogeography of Avian Invasions: History, Accident and Market Trade. , 2015, , 37-54.		13
161	Maturity matters for movement and metabolic rate: trait dynamics across the early adult life of red flour beetles. Animal Behaviour, 2016, 111, 181-188.	1.9	13
162	A concise guide to developing and using quantitative models in conservation management. Conservation Science and Practice, 2019, 1, e11.	2.0	13

#	Article	IF	CITATIONS
163	Does the fungus causing white-nose syndrome pose a significant risk to Australian bats?. Wildlife Research, 2019, 46, 657.	1.4	13
164	Plight of the commons: 17Âyears of wildlife trafficking in Cambodia. Biological Conservation, 2020, 241, 108379.	4.1	13
165	Coâ€designing behavior change interventions to conserve biodiversity. Conservation Science and Practice, 2020, 2, e278.	2.0	13
166	Using long-term occupancy information to inform the management of Cape Sable seaside sparrows in the Everglades. Biological Conservation, 2007, 139, 139-149.	4.1	12
167	A sum of its individual parts? Relative contributions of different eggshell regions to intraclutch variation in birds. Journal of Avian Biology, 2011, 42, 370-373.	1.2	12
168	Predicting the Risk of Biological Invasions Using Environmental Similarity and Transport Network Connectedness. Risk Analysis, 2019, 39, 35-53.	2.7	12
169	A framework for predicting which non-native individuals and species will enter, survive, and exit human-mediated transport. Biological Invasions, 2020, 22, 217-231.	2.4	12
170	Sexual plumage dichromatism in a size monomorphic seabird. Wilson Journal of Ornithology, 2014, 126, 417-428.	0.2	11
171	Integrative Analysis of the Physical Transport Network into Australia. PLoS ONE, 2016, 11, e0148831.	2.5	11
172	Maternal influence on eggshell maculation: implications for cryptic camouflaged eggs. Journal of Ornithology, 2016, 157, 303-310.	1.1	11
173	How much calcium to shell out? Eggshell calcium carbonate content is greater in birds with thinner shells, larger clutches and longer lifespans. Journal of the Royal Society Interface, 2021, 18, 20210502.	3.4	11
174	Lessons from introductions of exotic species as a possible information source for managing translocations of birds. Wildlife Research, 2008, 35, 193.	1.4	10
175	Can museum egg specimens be used for proteomic analyses?. Proteome Science, 2010, 8, 40.	1.7	10
176	A comparison of egg yolk lipid constituents between parasitic Common Cuckoos and their hosts. Auk, 2015, 132, 817-825.	1.4	10
177	Climate change erodes competitive hierarchies among native, alien and range-extending crabs. Marine Environmental Research, 2019, 151, 104777.	2.5	10
178	Of cowboys, fish, and pangolins: US trade in exotic leather. Conservation Science and Practice, 2019, 1, e75.	2.0	10
179	The Australian National Rabbit Database: 50Âyr of population monitoring of an invasive species. Ecology, 2019, 100, e02750.	3.2	10
180	Genetic perspectives on the historical introduction of the European rabbit (Oryctolagus cuniculus) to Australia. Biological Invasions, 2019, 21, 603-614.	2.4	10

#	Article	IF	CITATIONS
181	Evidence for Rapoport's rule and latitudinal patterns in the global distribution and diversity of alien bird species. Journal of Biogeography, 2020, 47, 1362-1372.	3.0	10
182	Text classification to streamline online wildlife trade analyses. PLoS ONE, 2021, 16, e0254007.	2.5	10
183	Drivers of the Australian native pet trade: The role of species traits, socioeconomic attributes and regulatory systems. Journal of Applied Ecology, 2022, 59, 1268-1278.	4.0	10
184	Indications of phenotypic plasticity in moulting birds: captive geese reveal adaptive changes in mineralisation of their long bones during wing moult. Journal of Ornithology, 2011, 152, 1055-1061.	1.1	9
185	Indirect estimates of breeding and natal philopatry in an obligate avian brood parasite. Journal of Ornithology, 2012, 153, 467-475.	1.1	9
186	Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals. PLoS ONE, 2014, 9, e91536.	2.5	9
187	Early life stress shapes female reproductive strategy through eggshell pigmentation in Japanese quail. General and Comparative Endocrinology, 2014, 208, 146-153.	1.8	9
188	Investigating movement in the laboratory: dispersal apparatus designs and the red flour beetle, <i><scp>T</scp>ribolium castaneum</i> . Entomologia Experimentalis Et Applicata, 2017, 163, 93-100.	1.4	9
189	Disentangling synergistic disease dynamics: Implications for the viral biocontrol of rabbits. Journal of Animal Ecology, 2018, 87, 1418-1428.	2.8	9
190	A concise guide to developing and using quantitative models in conservation management. Conservation Science and Practice, 2019, 1, e11.	2.0	9
191	Transcript―and annotationâ€guided genome assembly of the European starling. Molecular Ecology Resources, 2022, 22, 3141-3160.	4.8	9
192	Extinction in island endemic birds reconsidered. Ecography, 2004, 27, 124-129.	4.5	8
193	Are introduced and re-introduced species comparable? A case study of birds. Animal Conservation, 2004, 7, 427-433.	2.9	8
194	A general skew-t mixed model that allows different degrees of freedom for random effects and error distributions. Journal of Statistical Planning and Inference, 2014, 147, 235-247.	0.6	8
195	Targeting season and age for optimizing control of invasive rabbits. Journal of Wildlife Management, 2016, 80, 990-999.	1.8	8
196	The establishment threat of the obligate brood-parasitic Pin-tailed Whydah (<i>Vidua macroura</i>) in North America and the Antilles. Condor, 2017, 119, 449-458.	1.6	8
197	Geographical range expansion of alien birds and environmental matching. Ibis, 2017, 159, 193-203.	1.9	8
198	Lasting the distance: The survival of alien birds shipped to New Zealand in the 19th century. Ecology and Evolution, 2020, 10, 3944-3953.	1.9	8

#	Article	IF	CITATIONS
199	Resource pulses affect prey selection and reduce dietary diversity of dingoes in arid Australia. Mammal Review, 2019, 49, 263-275.	4.8	7
200	Accelerometer informed time-energy budgets reveal the importance of temperature to the activity of a wild, arid zone canid. Movement Ecology, 2021, 9, 11.	2.8	7
201	Reduced clutch-size is correlated with increased nest predation in exotic Turdus thrushes. Emu, 2009, 109, 294-299.	0.6	6
202	Drivers of alien species composition in bird markets across the world. Ecology and Evolution, 2022, 12, e8397.	1.9	6
203	Are there body size implications for the success of globally introduced land birds?. Ecography, 2001, 24, 413-420.	4.5	5
204	Phylogenetic relationships of the genus Mohoua, endemic hosts of New Zealand's obligate brood parasitic Long-tailed Cuckoo (Eudynamys taitensis). Journal of Ornithology, 2013, 154, 1127-1133.	1.1	5
205	How to incorporate information on propagule pressure in the analysis of alien establishment success. Methods in Ecology and Evolution, 2018, 9, 1097-1108.	5.2	5
206	Species invasions and the phylogenetic signal in geographical range size. Global Ecology and Biogeography, 2018, 27, 1080-1092.	5.8	5
207	Phenotypic variation and promiscuity in a wild population of pure dingoes (<i>Canis dingo</i>). Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 311-322.	1.4	5
208	Planetary Biosecurity: Applying Invasion Science to Prevent Biological Contamination from Space Travel. BioScience, 2022, 72, 247-253.	4.9	5
209	Threats to Avifauna on Oceanic Islands Revisited. Conservation Biology, 2008, 22, 492-494.	4.7	4
210	Evaluation of a glossmeter for studying the surface appearance of avian eggs. Journal of Ornithology, 2011, 152, 209-212.	1.1	4
211	The evolutionary causes of egg rejection in European thrushes (Turdusspp.): a reply to M. Soler. Frontiers in Zoology, 2014, 11, .	2.0	4
212	A Comparison of Antiserum and Protein A as Secondary Reagents to AssessToxoplasma gondiiAntibody Titers in Cats and Spotted Hyenas. Journal of Parasitology, 2015, 101, 390-392.	0.7	4
213	Pet or pest? Stable isotope methods for determining the provenance of an invasive alien species. NeoBiota, 0, 59, 21-37.	1.0	4
214	Bearing all Down Under: the role of Australasian countries in the illegal bear trade. Pacific Conservation Biology, 2022, 28, 472-480.	1.0	4
215	ة»¿Scalability of genetic biocontrols for eradicating invasive alien mammals. NeoBiota, 0, 74, 93-103.	1.0	4
216	Repeatability of laboratory measurements for maternally derived yolk carotenoid concentrations in bird eggs. Australian Journal of Zoology, 2006, 54, 381.	1.0	3

#	Article	IF	CITATIONS
217	A nondestructive method for extracting maternally derived egg yolk carotenoids. Journal of Field Ornithology, 2007, 78, 314-321.	0.5	3
218	Contemporary divergence of island bird plumage. Journal of Avian Biology, 2014, 45, 291-295.	1.2	3
219	Adaptive changes in the genomes of wild rabbits after 16 years of viral epidemics. Molecular Ecology, 2020, 29, 3777-3794.	3.9	3
220	Low detectability of alien reptiles can lead to biosecurity management failure: a case study from Christmas Island (Australia). NeoBiota, 0, 45, 75-92.	1.0	3
221	Dataset of seized wildlife and their intended uses. Data in Brief, 2021, 39, 107531.	1.0	3
222	Relationships between nestling condition and variability in coccidian prevalence among three species of wild-nesting birds in New Zealand. Australian Journal of Zoology, 2008, 56, 75.	1.0	2
223	Development and characterization of 13 new, and cross amplification of 3, polymorphic nuclear microsatellite loci in the common myna (Acridotheres tristis). Conservation Genetics Resources, 2012, 4, 621-624.	0.8	2
224	Proposed Surveillance for Influenza A in Feral Pigs. EcoHealth, 2016, 13, 410-414.	2.0	2
225	Broad conservation: Protect the unknowns. Science, 2017, 358, 1262-1263.	12.6	2
226	Long-term fertility control reduces overabundant koala populations and mitigates their impacts on food trees. Biological Conservation, 2021, 253, 108870.	4.1	2
227	The shape of things to come: non-native mammalian predators and the fate of island bird diversity. , 2009, , 235-248.		2
228	Recovering trace reptile DNA from the illegal wildlife trade. Forensic Science International Animals and Environments, 2022, 2, 100040.	0.8	2
229	The biogeography of avian extinctions on oceanic islands revisited. Journal of Biogeography, 2009, 36, 1613-1614.	3.0	1
230	Home range, habitat suitability and population modelling of feral Indian peafowl (Pavo cristatus) on Kangaroo Island, South Australia. Australian Journal of Zoology, 2016, 64, 107.	1.0	1
231	Modeling and Analysis of Method Comparison Data with Skewness and Heavy Tails. Springer Proceedings in Mathematics and Statistics, 2015, , 169-187.	0.2	1
232	Pangolins in Trouble. Frontiers for Young Minds, 0, 7, .	0.8	0