
Sahin K Ozdemir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3652805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chiral and degenerate perfect absorption on exceptional surfaces. Nature Communications, 2022, 13, 599.	12.8	55
2	Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science, 2022, 376, 184-188.	12.6	27
3	Exceptional Photon Blockade: Engineering Photon Blockade with Chiral Exceptional Points. Laser and Photonics Reviews, 2022, 16, .	8.7	28
4	Linear response theory of open systems with exceptional points. Nature Communications, 2022, 13, .	12.8	13
5	Electro-optic tuning of non-Hermiticity in a silicon microring resonator. , 2021, , .		2
6	Control of spontaneous emission dynamics in microcavities with chiral exceptional surfaces. Physical Review Research, 2021, 3, .	3.6	22
7	New perspective on chiral exceptional points with application to discrete photonics. APL Photonics, 2021, 6, .	5.7	14
8	Nonreciprocal optical solitons in a spinning Kerr resonator. Physical Review A, 2021, 103, .	2.5	20
9	Hierarchical Construction of Higher-Order Exceptional Points. Physical Review Letters, 2020, 125, 203602.	7.8	41
10	Surface-polaritonic phase singularities and multimode polaritonic frequency combs via dark rogue-wave excitation in hybrid plasmonic waveguide. New Journal of Physics, 2020, 22, 033008.	2.9	10
11	Loss compensation in metamaterials and plasmonics with virtual gain [Invited]. Optical Materials Express, 2020, 10, 1862.	3.0	8
12	Active tuning of silicon photonic microring resonator towards a chiral exceptional point. , 2020, , .		0
13	Sensing at Exceptional Points. , 2020, , .		0
14	Topological lattices lit at the corners. Nature Photonics, 2019, 13, 660-662.	31.4	4
15	Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: Gain saturation effects and nonreciprocity. Physical Review A, 2019, 99, .	2.5	43
16	Sensing with Exceptional Surfaces in Order to Combine Sensitivity with Robustness. Physical Review Letters, 2019, 122, 153902.	7.8	141
17	Biological physically unclonable function. Communications Physics, 2019, 2, .	5.3	44
18	Parity–time symmetry and exceptional points in photonics. Nature Materials, 2019, 18, 783-798.	27.5	940

#	Article	IF	CITATIONS
19	The dawn of non-Hermitian optics. Communications Physics, 2019, 2, .	5.3	121
20	Biological Oneâ€Way Functions for Secure Key Generation. Advanced Theory and Simulations, 2019, 2, 1800154.	2.8	11
21	Controlling directional absorption with chiral exceptional surfaces. Optics Letters, 2019, 44, 5242.	3.3	22
22	Fermi arcs connect topological degeneracies. Science, 2018, 359, 995-996.	12.6	10
23	Probing Decoherence in Plasmonic Waveguides in the Quantum Regime. Physical Review Applied, 2018, 9,	3.8	10
24	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> -symmetric circuit QED. Physical Review A, 2018, 97, .	2.5	79
25	Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance. Photonics Research, 2018, 6, 346.	7.0	43
26	Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited]. Photonics Research, 2018, 6, A23.	7.0	79
27	A phonon laser operating at an exceptional point. Nature Photonics, 2018, 12, 479-484.	31.4	264
28	Active control of a plasmonic metamaterial for quantum state engineering. Physical Review A, 2018, 97, .	2.5	9
29	Nanoparticle sensing with a spinning resonator. Optica, 2018, 5, 1424.	9.3	81
30	Ultrafast laser-probing spectroscopy for studying molecular structure of protein aggregates. Analyst, The, 2017, 142, 1434-1441.	3.5	7
31	Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system. Physical Review A, 2017, 95, .	2.5	67
32	Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator. Science Bulletin, 2017, 62, 875-878.	9.0	45
33	On-chip ultrahigh-Q packaged microresonator and applications (Conference Presentation). , 2017, , .		0
34	Structural Protein-Based Whispering Gallery Mode Resonators. ACS Photonics, 2017, 4, 2179-2186.	6.6	21
35	High-order exceptional points in optomechanics. Scientific Reports, 2017, 7, 3386.	3.3	151
36	Reverse PT phase transition across exceptional points of any order. Europhysics Letters, 2017, 119, 34003.	2.0	3

#	Article	IF	CITATIONS
37	Controllable oscillatory lateral coupling in a waveguide-microdisk-resonator system. Scientific Reports, 2017, 7, 8045.	3.3	8
38	Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548, 192-196.	27.8	1,242
39	Quantum random number generation using an on-chip plasmonic beamsplitter. Quantum Science and Technology, 2017, 2, 035004.	5.8	7
40	Exceptional Points in Random-Defect Phonon Lasers. Physical Review Applied, 2017, 8, .	3.8	98
41	Experimental characterization of a non-local convertor for quantum photonic networks. Optics Express, 2017, 25, 7839.	3.4	4
42	Distillation of photon entanglement using a plasmonic metamaterial. Scientific Reports, 2016, 5, 18313.	3.3	29
43	Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity. Applied Physics Letters, 2016, 108, 181105.	3.3	15
44	A simple method for characterizing and engineering thermal relaxation of an optical microcavity. Applied Physics Letters, 2016, 109, .	3.3	14
45	Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nature Photonics, 2016, 10, 399-405.	31.4	185
46	Gain competition induced mode evolution and resonance control in erbium-doped whispering-gallery microresonators. Optics Express, 2016, 24, 9550.	3.4	17
47	display="inline"> <mml:mrow><mml:mi mathvariant="script">PT</mml:mi </mml:mrow> -Symmetric Cavities: Enhanced Sensitivity near the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi< td=""><td>7.8</td><td>290</td></mml:mi<></mml:mrow></mml:math>	7.8	290
48	Observation of optomechanical coupling in a microbottle resonator. Laser and Photonics Reviews, 2016, 10, 603-611.	8.7	32
49	Anomalous time delays and quantum weak measurements in optical micro-resonators. Nature Communications, 2016, 7, 13488.	12.8	37
50	Photonic multipartite entanglement conversion using nonlocal operations. Physical Review A, 2016, 94, .	2.5	21
51	Stimulated Brillouin scattering coupled four-wave mixing in a microbottle resonator. , 2016, , .		0
52	Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator. Optics Express, 2016, 24, 12082.	3.4	37
53	Chiral modes and directional lasing at exceptional points. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6845-6850.	7.1	422
54	Protein-based flexible whispering gallery mode resonators. Proceedings of SPIE, 2016, , .	0.8	3

#	Article	IF	CITATIONS
55	Deterministic local doubling of W states. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2313.	2.1	28
56	Visible light emission from a silica microbottle resonator by second- and third-harmonic generation. Optics Letters, 2016, 41, 5793.	3.3	20
57	Transient microcavity sensor. Optics Express, 2015, 23, 30067.	3.4	18
58	Vertically coupled microresonators and oscillatory mode splitting in photonic molecules. Optics Express, 2015, 23, 30793.	3.4	6
59	Quantum state tomography of large nuclear spins in a semiconductor quantum well: Optimal robustness against errors as quantified by condition numbers. Physical Review B, 2015, 92, .	3.2	25
60	Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes. Physical Review B, 2015, 92, .	3.2	103
61	Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities. Optics Express, 2015, 23, 29573.	3.4	20
62	Lithium-niobate-silica hybrid whispering-gallery-mode resonators. , 2015, , .		23
63	Lithiumâ€Niobate–Silica Hybrid Whisperingâ€Galleryâ€Mode Resonators. Advanced Materials, 2015, 27, 8075-8081.	21.0	44
64	Optomechanically-induced transparency in parity-time-symmetric microresonators. Scientific Reports, 2015, 5, 9663.	3.3	261
65	Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials. Physical Review Letters, 2015, 115, 035502.	7.8	42
66	Quantum Entanglement Distillation Using an Optical Metamaterial. , 2015, , .		0
67	Quantum entanglement distillation with metamaterials. Optics Express, 2015, 23, 17941.	3.4	22
68	Universal gates for transforming multipartite entangled Dicke states. New Journal of Physics, 2014, 16, 023005.	2.9	17
69	Label-Free Particle Sensing by Fiber Taper-Based Raman Spectroscopy. IEEE Photonics Technology Letters, 2014, 26, 2093-2096.	2.5	10
70	Parity-time (PT)-symmetric optical microcavities. , 2014, , .		0
71	Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect (presentation video). , 2014, , .		0
72	Inverted-wedge silica resonators for controlled and stable coupling. Optics Letters, 2014, 39, 1841.	3.3	21

#	Article	IF	CITATIONS
73	Infrared light detection using a whispering-gallery-mode optical microcavity. Applied Physics Letters, 2014, 104, .	3.3	19
74	Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators. Applied Physics Letters, 2014, 105, .	3.3	57
75	What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nature Communications, 2014, 5, 5082.	12.8	390
76	Fusing multiple <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi>states simultaneously with a Fredkin gate. Physical Review A, 2014, 89, .</mml:math 	2.5	69
77	Phonon amplification in two coupled cavities containing one mechanical resonator. Physical Review A, 2014, 90, .	2.5	28
78	Parity–time-symmetric whispering-gallery microcavities. Nature Physics, 2014, 10, 394-398.	16.7	1,892
79	Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect. , 2014, , .		0
80	Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3836-44.	7.1	192
81	Loss-induced suppression and revival of lasing. Science, 2014, 346, 328-332.	12.6	748
82	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">PT</mml:mi </mml:mrow></mml:math> -Symmetric Phonon Laser. Physical Review Letters, 2014, 113, 053604.	7.8	502
83	Observation of Quantum Interference in the Plasmonic Hong-Ou-Mandel Effect. Physical Review Applied, 2014, 1, .	3.8	86
84	Titanium Dioxide Whispering Gallery Microcavities. Advanced Optical Materials, 2014, 2, 711-717.	7.3	59
85	Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering. Scientific Reports, 2014, 4, 6396.	3.3	45
86	Whispering gallery microcavity lasers. Laser and Photonics Reviews, 2013, 7, 60-82.	8.7	465
87	Quantum internet using code division multiple access. Scientific Reports, 2013, 3, 2211.	3.3	22
88	Encapsulation of a Fiber Taper Coupled Microtoroid Resonator in a Polymer Matrix. IEEE Photonics Technology Letters, 2013, 25, 1458-1461.	2.5	58
89	Quantum plasmonics. Nature Physics, 2013, 9, 329-340.	16.7	1,255
90	Tunable add-drop filter using an active whispering gallery mode microcavity. Applied Physics Letters, 2013, 103, 181103.	3.3	54

#	Article	IF	CITATIONS
91	High quality factor silica microspheres functionalized with self-assembled nanomaterials. Optics Express, 2013, 21, 20601.	3.4	9
92	A Tunable Add-Drop Filter Based on Active Microsphere Resonator. , 2013, , .		0
93	On-chip whispering-gallery-mode microlasers and their applications for nanoparticle sensing. Proceedings of SPIE, 2013, , .	0.8	0
94	Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers. New Journal of Physics, 2013, 15, 073030.	2.9	25
95	An active add-drop filter using an ytterbium and erbium co-doped silica microsphere. , 2013, , .		0
96	Ultrasound sensing using a fiber coupled silica microtoroid resonator encapsulated in a polymer. , 2013, , .		7
97	Twofold transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> -symmetric coupled oscillators. Physical Review A, 2013, 88, .	2.5	116
98	Raman spectroscopic sensing using whispering gallery microresonators. Proceedings of SPIE, 2013, , .	0.8	2
99	Reflection Detection of Nanoparticles using Whispering gallery Microresonators. , 2013, , .		1
100	Engineering the spectral properties of photonic molecules. , 2013, , .		1
101	Superadditivity of quantum channel capacity. , 2012, , .		0
102	Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator. Optics Express, 2012, 20, 29426.	3.4	36
103	Encapsulation of a microtoroid resonator side-coupled to a fiber taper into a polymer matrix. , 2012, , .		1
104	Quantum Statistics of Surface Plasmon Polaritons in Metallic Stripe Waveguides. Nano Letters, 2012, 12, 2504-2508.	9.1	84
105	An on-chip tunable add-drop filter using a microtoroid resonator. , 2012, , .		0
106	Photonic molecules formed by coupled hybrid resonators. Optics Letters, 2012, 37, 3435.	3.3	57
107	On-chip whispering-gallery-mode lasers for sensing applications. , 2012, , .		0
108	A Robust and Tunable Add–Drop Filter Using Whispering Gallery Mode Microtoroid Resonator. Journal of Lightwave Technology, 2012, 30, 3306-3315.	4.6	110

0

#	Article	IF	CITATIONS
109	Mode splitting based single particle size measurement in water. , 2012, , .		0
110	Hybrid photonic molecules. , 2012, , .		0
111	High Q microtoroid and applications. , 2011, , .		0
112	Observation and characterization of mode splitting in microsphere resonators in aquatic environment. Applied Physics Letters, 2011, 98, .	3.3	40
113	Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. Optics Express, 2011, 19, 16195.	3.4	87
114	Bypassing the diffusion limit. Nature Photonics, 2011, 5, 653-654.	31.4	4
115	Interactions of sub-wavelength light scatterers with a Whispering-Gallery-Mode optical microresonator. , 2011, , .		0
116	Ultra-high-quality Whispering-Gallery-Mode Resonators for Single Nanoparticle Detection and Measurement. , 2011, , .		0
117	Preparation and Local Manipulation of Photonic W States Using Expansion and Fusion Gates. , 2011, , .		0
118	A self-reference sensing technique for ultra-sensitive chemical and biological detection using whispering gallery microresonators. , 2011, , .		3
119	Direct Estimation of Purcell Factor from Scatterer-Induced Mode Splitting Spectra of an Optical Microcavity. , 2011, , .		1
120	Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature Nanotechnology, 2011, 6, 428-432.	31.5	571
121	Optical Detection of Single Nanoparticles With a Subwavelength Fiber-Taper. IEEE Photonics Technology Letters, 2011, 23, 1346-1348.	2.5	30
122	Single nanoparticle detection using a microcavity laser. , 2011, , .		0
123	Estimation of Purcell factor from mode-splitting spectra in an optical microcavity. Physical Review A, 2011, 83, .	2.5	38
124	Optothermal spectroscopy of whispering gallery microresonators. Applied Physics Letters, 2011, 99, .	3.3	26
125	An optical fusion gate for W-states. New Journal of Physics, 2011, 13, 103003.	2.9	63

126 On-chip Optical Resonators for Single Nanoparticle Detection and Measurement. , 2011, , .

#	Article	IF	CITATIONS
127	Detecting and measuring single viruses and nanoparticles with an optical microresonator. , 2011, , .		0
128	Mode Splitting in Whispering-Gallery-Mode Microresonators in Aquatic Environment. , 2011, , .		0
129	Detection of single nanoparticles using a nano fiber-taper. , 2011, , .		Ο
130	Optical detection of nanoparticles by mode splitting in whispering-gallery-mode microcavities. , 2010, ,		0
131	On-chip single nanoparticle detection using ultra-high-Q whispering gallery microresonator. , 2010, , .		0
132	Self-Pulsing in On-Chip Er-Doped Microcavity Lasers. , 2010, , .		0
133	Ultrasensitive detection of mode splitting in active optical microcavities. Physical Review A, 2010, 82, .	2.5	54
134	Gain-Induced Evolution of Mode Splitting Spectra in a High-\$Q\$ Active Microresonator. IEEE Journal of Quantum Electronics, 2010, 46, 1626-1633.	1.9	32
135	On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nature Photonics, 2010, 4, 46-49.	31.4	987
136	Demonstration of Local Expansion Toward Large-Scale Entangled Webs. Physical Review Letters, 2010, 105, 210503.	7.8	45
137	Demonstration of mode splitting in an optical microcavity in aqueous environment. Applied Physics Letters, 2010, 97, .	3.3	53
138	Scatterer induced mode splitting in poly(dimethylsiloxane) coated microresonators. Applied Physics Letters, 2010, 96, .	3.3	21
139	Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Optics Express, 2010, 18, 23535.	3.4	129
140	Self-pulsation in fiber-coupled, on-chip microcavity lasers. Optics Letters, 2010, 35, 256.	3.3	17
141	Local Transformation of Two EPR Photon Pairs into a Three-Photon W State Using a Polarization Dependent Beamsplitter. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , 39-45.	0.3	1
142	Nanoparticle Detection in Water by Mode Splitting in An Optical Microresonator. , 2010, , .		0
143	Scatterer Induced Mode Splitting in Active Microcavities. , 2010, , .		0
144	Detection and sizing of single nanoparticles by mode splitting in an optical microresonator. , 2010, , .		0

9

#	Article	IF	CITATIONS
145	Scatterer Mediated Modal Coupling in Active Optical Microcavities. , 2010, , .		0
146	Optimal mirror phase-covariant cloning. Physical Review A, 2009, 80, .	2.5	29
147	Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Applied Physics Letters, 2009, 94, .	3.3	242
148	Local Transformation of Two Einstein-Podolsky-Rosen Photon Pairs into a Three-Photon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi>State. Physical Review Letters, 2009, 102, 130502.</mml:math 	7.8	86
149	Preparation of a three-photon W state from two EPR photon pairs by LOCC. , 2009, , .		Ο
150	Compact Toffoli gate using weighted graph states. Physical Review A, 2009, 79, .	2.5	18
151	Local expansion of photonic W state using a polarization-dependent beamsplitter. New Journal of Physics, 2009, 11, 023024.	2.9	63
152	Local transformation of two EPR photon pairs into a three-photon W state. , 2009, , .		1
153	Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators. Optics Express, 2009, 17, 9571.	3.4	66
154	Optimal entanglement generation for efficient hybrid quantum repeaters. Physical Review A, 2009, 80, .	2.5	26
155	Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace. Nature Photonics, 2008, 2, 488-491.	31.4	53
156	A Comparative Study for the Assessment on Blood Flow Measurement Using Self-Mixing Laser Speckle Interferometer. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 355-363.	4.7	34
157	Elementary optical gate for expanding an entanglement web. Physical Review A, 2008, 77, .	2.5	77
158	Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity. Optics Express, 2008, 16, 21462.	3.4	80
159	An Elementary Optical Gate for Expanding Symmetrically Shared Entanglement. Lecture Notes in Computer Science, 2008, , 70-82.	1.3	Ο
160	PLAYING GAMES IN QUANTUM MECHANICAL SETTINGS: FEATURES OF QUANTUM GAMES. , 2008, , .		0
161	A necessary and sufficient condition to play games in quantum mechanical settings. New Journal of Physics, 2007, 9, 43-43.	2.9	42
162	Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking. New Journal of Physics, 2007, 9, 191-191.	2.9	19

#	Article	IF	CITATIONS
163	Selective truncations of an optical state using projection synthesis. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 379.	2.1	19
164	Teleportation of qubit states through dissipative channels: Conditions for surpassing the no-cloning limit. Physical Review A, 2007, 76, .	2.5	51
165	Quantum Entanglement and Teleportation of Quantum-Dot States in Microcavities. E-Journal of Surface Science and Nanotechnology, 2007, 5, 51-59.	0.4	3
166	Assessment on Self-mixing Laser Interferometry for Blood flow Measurement over Skin Surface. , 2006, , .		2
167	Nanometre-scale nuclear-spin device for quantum information processing. Journal of Physics Condensed Matter, 2006, 18, S885-S900.	1.8	25
168	Nuclear Spins in a Nanoscale Device for Quantum Information Processing. E-Journal of Surface Science and Nanotechnology, 2006, 4, 669-673.	0.4	2
169	Assessment on Self-mixing Laser Interferometry for Blood flow Measurement over Skin Surface. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2006, , .	0.0	0
170	Embedding watermark in qubit strings using error correction coding. , 2005, , .		2
171	Faithful Qubit Distribution Assisted by One Additional Qubit against Collective Noise. Physical Review Letters, 2005, 95, 040503.	7.8	83
172	A distribution scheme for qubit over collective-noise channel. , 2005, , .		0
173	Kraus representation of a damped harmonic oscillator and its application. Physical Review A, 2004, 70, .	2.5	40
174	QUANTUM AND CLASSICAL CORRELATIONS BETWEEN PLAYERS IN GAME THEORY. International Journal of Quantum Information, 2004, 02, 79-89.	1.1	37
175	Quantum advantage does not survive in the presence of a corrupt source: optimal strategies in simultaneous move games. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 325, 104-111.	2.1	35
176	Entangled states that cannot reproduce original classical games in their quantum version. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 328, 20-25.	2.1	30
177	Dynamics of a discoordination game with classical and quantum correlations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 333, 218-231.	2.1	29
178	Size-dependent decoherence of excitonic states in semiconductor microcrystallites. Physical Review A, 2003, 67, .	2.5	6
179	Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature, 2003, 421, 343-346.	27.8	195
180	Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor. Journal of Lightwave Technology, 2003, 21, 805-814.	4.6	170

#	Article	IF	CITATIONS
181	Maximally entangled spin states in equivalent-neighbor systems of quantum dots in a microcavity. , 2003, 5259, 42.		0
182	Optical qubit generation by linear and nonlinear quantum scissors. , 2003, 5259, 47.		1
183	Generation of maximum spin entanglement induced by a cavity field in quantum-dot systems. Physical Review A, 2002, 65, .	2.5	49
184	Semiconductor-cavity QED in high-Qregimes: Detuning effect. Physical Review A, 2002, 65, .	2.5	14
185	Pulse-mode quantum projection synthesis: Effects of mode mismatch on optical state truncation and preparation. Physical Review A, 2002, 66, .	2.5	37
186	Optical qubit generation by state truncation using an experimentally feasible scheme. Journal of Modern Optics, 2002, 49, 977-984.	1.3	10
187	Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED. Physical Review A, 2002, 65, .	2.5	32
188	QUBIT-STATE GENERATION USING PROJECTION SYNTHESIS. , 2002, , .		0
189	Compact optical instrument for surface classification using self-mixing interference in a laser diode. Optical Engineering, 2001, 40, 38.	1.0	36
190	Quantum-scissors device for optical state truncation: A proposal for practical realization. Physical Review A, 2001, 64, .	2.5	77
191	Self-mixing laser speckle velocimeter for blood flow measurement. IEEE Transactions on Instrumentation and Measurement, 2000, 49, 1029-1035.	4.7	49
192	Effect of Linewidth Enhancement Factor on Doppler Beat Waveform Obtained from a Self-Mixing Laser Diode. Optical Review, 2000, 7, 550-554.	2.0	7
193	A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements. Measurement Science and Technology, 2000, 11, 1447-1455.	2.6	12
194	Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: <italic>in vitro</italic> and <italic>in vivo</italic> experiments. Optical Engineering, 2000, 39, 2574.	1.0	35
195	Speckle Signal Generation in Self-Mixing Laser Diodes and its Use for Speckle Velocimetry. , 2000, , 41-48.		0
196	Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diodes. Applied Optics, 1999, 38, 1968.	2.1	32
197	Correlation-based speckle velocimeter with self-mixing interference in a semiconductor laser diode. Applied Optics, 1999, 38, 6859.	2.1	29
198	Measurement of blood flow over skin surface with a self-mixing laser interferometer. , 0, , .		0

Measurement of blood flow over skin surface with a self-mixing laser interferometer. , 0, , . 198