Roe-Hoan Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3652778/publications.pdf

Version: 2024-02-01

47 papers

2,280 citations

279798 23 h-index 206112 48 g-index

52 all docs 52 docs citations

52 times ranked 1501 citing authors

#	Article	IF	CITATIONS
1	Hydrophobic Interactions between Dissimilar Surfaces. Journal of Colloid and Interface Science, 1997, 185, 363-370.	9.4	272
2	Application of Extended DLVO Theory, IV. Journal of Colloid and Interface Science, 1996, 181, 613-626.	9.4	217
3	Zeta-potential measurements on microbubbles generated using various surfactants. Journal of Colloid and Interface Science, 1986, 113, 430-438.	9.4	212
4	Application of Extended DLVO Theory. Journal of Colloid and Interface Science, 1993, 157, 426-433.	9.4	160
5	The role of hydrophobia interactions in coagulation. Journal of Colloid and Interface Science, 1989, 132, 532-541.	9.4	108
6	A study of hydrophobic coagulation. Journal of Colloid and Interface Science, 1990, 134, 427-434.	9.4	102
7	Effects of surface forces and film elasticity on foam stability. International Journal of Mineral Processing, 2008, 85, 101-110.	2.6	99
8	Long-Range Hydrophobic Forces between Mica Surfaces in Dodecylammonium Chloride Solutions in the Presence of Dodecanol. Journal of Colloid and Interface Science, 1996, 179, 391-402.	9.4	89
9	Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate:Â Effect of Electrolyte. Langmuir, 2004, 20, 11457-11464.	3.5	78
10	Effects of Degassing and Ionic Strength on AFM Force Measurements in Octadecyltrimethylammonium Chloride Solutions. Langmuir, 2005, 21, 5831-5841.	3.5	72
11	Application of Extended DLVO Theory. Journal of Colloid and Interface Science, 1994, 166, 215-224.	9.4	64
12	Predicting flotation rates using a rate equation derived from first principles. International Journal of Mineral Processing, 1997, 51, 171-181.	2.6	64
13	Hydrophobic Forces in Thin Water Films Stabilized by Dodecylammonium Chloride. Journal of Colloid and Interface Science, 1999, 211, 1-10.	9.4	64
14	Use of Hydrophobic Particles as Kinetic Promoters for Gas Hydrate Formation. Journal of Chemical & Engineering Data, 2015, 60, 383-388.	1.9	57
15	Role of hydrophobic force in the thinning of foam films containing a nonionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 84-91.	4.7	53
16	Long-Range Hydrophobic Forces between Mica Surfaces in Alkaline Dodecylammonium Chloride Solutions. Journal of Colloid and Interface Science, 1996, 179, 403-411.	9.4	44
17	Measurement of hydrophobic forces in thin liquid films of water between bubbles and xanthate-treated gold surfaces. Minerals Engineering, 2016, 98, 240-250.	4.3	41
18	Hydrophobic forces in thin aqueous films and their role in film thinning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263, 267-274.	4.7	39

#	Article	IF	Citations
19	A fundamental study on the role of collector in the kinetics of bubble–particle interaction. International Journal of Mineral Processing, 2012, 106-109, 37-41.	2.6	39
20	Development of a turbulent flotation model from first principles and its validation. International Journal of Mineral Processing, 2016, 156, 43-51.	2.6	38
21	Stability of foams and froths in the presence of ionic and non-ionic surfactants. Minerals Engineering, 2006, 19, 539-547.	4.3	37
22	Development of environmentally friendly nonchrome conversion coating for electrogalvanized steel. Surface and Coatings Technology, 2004, 188-189, 762-767.	4.8	35
23	Thermodynamics of hydrophobic interaction between silica surfaces coated with octadecyltrichlorosilane. Journal of Colloid and Interface Science, 2013, 392, 369-375.	9.4	28
24	AFM surface force measurements conducted with silica in CnTACl solutions: Effect of chain length on hydrophobic force. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 335-345.	4.7	25
25	Effect of pH and NaCl Concentration on the Stability of Surfactant-Free Foam Films. Langmuir, 2009, 25, 294-297.	3.5	24
26	AFM Forces Measured between Gold Surfaces Coated with Self-Assembled Monolayers of 1-Hexadecanethiol. Langmuir, 2008, 24, 7889-7896.	3.5	23
27	Hydrophobic forces in the wetting films of water formed on xanthate-coated gold surfaces. Faraday Discussions, 2010, 146, 325.	3.2	23
28	Predicting bubble coarsening in flotation froth: Effect of contact angle and particle size. Minerals Engineering, 2018, 127, 256-264.	4.3	19
29	Excess thermodynamic properties of thin water films confined between hydrophobized gold surfaces. Journal of Colloid and Interface Science, 2011, 364, 257-263.	9.4	17
30	AFM surface force measurements conducted between gold surfaces treated in xanthate solutions. International Journal of Mineral Processing, 2013, 122, 13-21.	2.6	13
31	A Response to the Comment on "Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate:  Effect of Electrolyte― Langmuir, 2008, 24, 5194-5196.	3.5	12
32	Surface forces in thin liquid films of n-alcohols and of water–ethanol mixtures confined between hydrophobic surfaces. Journal of Colloid and Interface Science, 2012, 379, 114-120.	9.4	12
33	Effects of elctrolytes on the stability of wetting films: Implications on seawater flotation. Minerals Engineering, 2018, 122, 1-9.	4.3	11
34	Surface Forces in the Thin Liquid Films (TLFs) of Water Confined between <i>n</i> -Alkane Drops and Hydrophobic Gold Surfaces. Langmuir, 2019, 35, 15681-15691.	3.5	11
35	Dewatering of Fine Coal Using Hyperbaric Centrifugation. Coal Preparation, 2005, 25, 117-127.	0.5	10
36	AFM force measurements between gold and silver surfaces treated in ethyl xanthate solutions: Effect of applied potentials. Minerals Engineering, 2012, 36-38, 126-131.	4.3	9

#	Article	IF	CITATIONS
37	Improving the separation of diamond from gangue minerals. Minerals Engineering, 2012, 36-38, 168-171.	4.3	9
38	Control of bubble \hat{I}_7 -potentials to improve the kinetics of bubble-particle interactions. Minerals Engineering, 2020, 151, 106295.	4.3	9
39	Thermodynamics of Solvophobic Interaction between Hydrophobic Surfaces in Ethanol. Langmuir, 2014, 30, 13312-13320.	3.5	6
40	A high-order moment-conserving method of classes (HMMC) based population balance model for mechanical flotation cells. Minerals Engineering, 2017, 108, 36-52.	4.3	6
41	Development of the Centribaricâ,,¢ Dewatering Technology. International Journal of Coal Preparation and Utilization, 2010, 30, 204-216.	2.1	4
42	A Field Survey of Rare Earth Element Concentrations in Process Streams Produced by Coal Preparation Plants in the Eastern USA. Mining, Metallurgy and Exploration, 2019, 36, 889-902.	0.8	3
43	Effect of ζ-Potentials on Bubble-Particle Interactions. Mining, Metallurgy and Exploration, 2019, 36, 21-34.	0.8	3
44	Development of a flotation simulator that can predict grade vs. Recovery curves from mineral liberation data. Minerals Engineering, 2022, 181, 107510.	4.3	3
45	Surface Forces Measured Between Xanthate-Coated Gold Surfaces. ECS Transactions, 2010, 28, 3-14.	0.5	2
46	Numerical modeling and experiments of coarsening foam. International Journal of Mineral Processing, 2011, 98, 66-73.	2.6	2
47	Thermodynamic Properties of Waterâ^'Ethanol Films Formed between Hydrophobic Surfaces. Part I Colloid Journal, 2019, 81, 650-661.	1.3	2