Sung Soo Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3652734/publications.pdf Version: 2024-02-01

		249298	466096
32	2,473	26	32
papers	citations	h-index	g-index
32	32	32	3125
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Skinâ€Interfaced, Miniaturized Microfluidic Analysis and Delivery System for Colorimetric Measurements of Nutrients in Sweat and Supply of Vitamins Through the Skin. Advanced Science, 2022, 9, e2103331.	5.6	53
2	A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science, 2022, 376, 1006-1012.	6.0	90
3	Kangaroo father care: A pilot feasibility study of physiologic, biologic, and psychosocial measures to capture the effects of father–infant and mother–infant skinâ€ŧoâ€skin contact in the Neonatal Intensive Care Unit. Developmental Psychobiology, 2021, 63, 1521-1533.	0.9	15
4	Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Science Advances, 2021, 7, .	4.7	128
5	Mechanoreceptorâ€Inspired Dynamic Mechanical Stimuli Perception based on Switchable Ionic Polarization. Advanced Functional Materials, 2021, 31, 2100649.	7.8	28
6	Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids. Advanced Materials, 2021, 33, e2100026.	11.1	23
7	Wireless, Skinâ€Interfaced Devices for Pediatric Critical Care: Application to Continuous, Noninvasive Blood Pressure Monitoring. Advanced Healthcare Materials, 2021, 10, e2100383.	3.9	33
8	Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Science Advances, 2021, 7, .	4.7	55
9	Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nature Communications, 2021, 12, 4374.	5.8	158
10	Bitter Flavored, Soft Composites for Wearables Designed to Reduce Risks of Choking in Infants. Advanced Materials, 2021, 33, e2103857.	11.1	17
11	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nature Communications, 2021, 12, 5008.	5.8	83
12	Skinâ€Integrated Devices with Soft, Holey Architectures for Wireless Physiological Monitoring, With Applications in the Neonatal Intensive Care Unit. Advanced Materials, 2021, 33, e2103974.	11.1	35
13	Miniaturized wireless, skin-integrated sensor networks for quantifying full-body movement behaviors and vital signs in infants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
14	Ultrahigh Power Output from Triboelectric Nanogenerator Based on Serrated Electrode via Spark Discharge. Advanced Energy Materials, 2020, 10, 2002312.	10.2	45
15	A wireless, skin-interfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31674-31684.	3.3	55
16	Wireless, skin-interfaced sensors for compression therapy. Science Advances, 2020, 6, .	4.7	52
17	Aim high energy conversion efficiency in triboelectric nanogenerators. Science and Technology of Advanced Materials, 2020, 21, 683-688.	2.8	4
18	Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27906-27915.	3.3	84

SUNG SOO KWAK

#	Article	IF	CITATIONS
19	Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Science Advances, 2020, 6, eabb1093.	4.7	87
20	Microdischargeâ€Based Direct Current Triboelectric Nanogenerator via Accumulation of Triboelectric Charge in Atmospheric Condition. Advanced Energy Materials, 2020, 10, 2000730.	10.2	46
21	High Permittivity CaCu ₃ Ti ₄ O ₁₂ Particleâ€Induced Internal Polarization Amplification for High Performance Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 1903524.	10.2	85
22	Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy and Environmental Science, 2019, 12, 3156-3163.	15.6	107
23	Textileâ€Based Triboelectric Nanogenerators for Selfâ€Powered Wearable Electronics. Advanced Functional Materials, 2019, 29, 1804533.	7.8	148
24	Sustainable direct current powering a triboelectric nanogenerator <i>via</i> a novel asymmetrical design. Energy and Environmental Science, 2018, 11, 2057-2063.	15.6	153
25	Highâ€Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDFâ€TrFE) with Controlled Crystallinity and Dipole Alignment. Advanced Functional Materials, 2017, 27, 1700702.	7.8	149
26	Highâ€₽erformance Triboelectric Nanogenerators Based on Solid Polymer Electrolytes with Asymmetric Pairing of Ions. Advanced Energy Materials, 2017, 7, 1700289.	10.2	129
27	Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity. 2D Materials, 2017, 4, 025049.	2.0	34
28	Fully Stretchable Textile Triboelectric Nanogenerator with Knitted Fabric Structures. ACS Nano, 2017, 11, 10733-10741.	7.3	191
29	Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy, 2017, 42, 300-306.	8.2	126
30	Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu ₂ 0 Layer. ACS Applied Materials & Interfaces, 2016, 8, 22135-22141.	4.0	12
31	Triboelectrification-Induced Large Electric Power Generation from a Single Moving Droplet on Graphene/Polytetrafluoroethylene. ACS Nano, 2016, 10, 7297-7302.	7.3	183
32	Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector. Optics Express, 2015, 23, 18864.	1.7	35