
Carmen Pueyo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3652237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2D-DIGE as a proteomic biomarker discovery tool in environmental studies with Procambarus clarkii. Science of the Total Environment, 2017, 584-585, 813-827.	3.9	17
2	Validation of commercial real-time PCR-arrays for environmental risk assessment: Application to the study of p,p´- DDE toxicity in Mus spretus mice liver. Environmental Pollution, 2017, 230, 178-188.	3.7	8
3	Global gene expression profiling using heterologous DNA microarrays to analyze alterations in the transcriptome of Mus spretus mice living in a heavily polluted environment. Environmental Science and Pollution Research, 2016, 23, 5853-5867.	2.7	14
4	iTRAQ analysis of hepatic proteins in free-living Mus spretus mice to assess the contamination status of areas surrounding Doñana National Park (SW Spain). Science of the Total Environment, 2015, 523, 16-27.	3.9	18
5	Functional genomics and metabolomics reveal the toxicological effects of cadmium in Mus musculus mice. Metabolomics, 2015, 11, 1432-1450.	1.4	17
6	Omics technologies and their applications to evaluate metal toxicity in mice M. spretus as a bioindicator. Journal of Proteomics, 2014, 104, 4-23.	1.2	26
7	Use of Metallomics and Metabolomics to Assess Metal Pollution in Doñana National Park (SW Spain). Environmental Science & Technology, 2014, 48, 7747-7755.	4.6	17
8	The environmental quality of Doñana surrounding areas affects the immune transcriptional profile of inhabitant crayfish Procambarus clarkii. Fish and Shellfish Immunology, 2014, 40, 136-145.	1.6	18
9	Heterologous Microarray Analysis of Transcriptome Alterations in <i>Mus spretus</i> Mice Living in an Industrial Settlement. Environmental Science & amp; Technology, 2014, 48, 2183-2192.	4.6	13
10	Redox proteomics as biomarker for assessing the biological effects of contaminants in crayfish from Doñana National Park. Science of the Total Environment, 2014, 490, 121-133.	3.9	16
11	Evolution of metallotionein isoforms complexes in hepatic cells of Mus musculus along cadmium exposure. BioMetals, 2013, 26, 639-650.	1.8	17
12	Proteomics in HepG2 hepatocarcinoma cells with stably silenced expression of PRDX1. Journal of Proteomics, 2013, 79, 161-171.	1.2	24
13	Use of Metallomics in Environmental Pollution Assessment Using Mice Mus musculus/Mus spretus as Bioindicators. Current Analytical Chemistry, 2013, 9, 229-243.	0.6	6
14	Identification of proteins containing redox-sensitive thiols after PRDX1, PRDX3 and GCLC silencing and/or glucose oxidase treatment in Hepa 1–6 cells. Journal of Proteomics, 2012, 77, 262-279.	1.2	10
15	Differential expression of the Gstp2 gene between the aboriginal species Mus spretus and the laboratory mouse Mus musculus. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 747, 53-61.	0.9	8
16	Biological response of free-living mouse Mus spretus from Doñana National Park under environmental stress based on assessment of metal-binding biomolecules by SEC-ICP-MS. Analytical and Bioanalytical Chemistry, 2012, 404, 1967-1981.	1.9	41
17	Speciation of arsenic metabolites in the free-living mouse Mus spretus from Doñana National Park used as a bio-indicator for environmental pollution monitoring. Chemical Papers, 2012, 66, .	1.0	10
18	<i>Omic</i> Approaches in Environmental Issues. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2011, 74, 1001-1019.	1.1	22

#	Article	IF	CITATIONS
19	Size characterization of metal species in liver and brain from free-living (Mus spretus) and laboratory (Mus Musculus) mice by SEC-ICP-MS: Application to environmental contamination assessment. Journal of Analytical Atomic Spectrometry, 2011, 26, 141-149.	1.6	25
20	Growth phase-dependent variations in transcript profiles for thioredoxin- and glutathione-dependent redox systems followed by budding and hyphalCandida albicans cultures. FEMS Yeast Research, 2009, 9, 1078-1090.	1.1	28
21	Metallomics integrated with proteomics in deciphering metal-related environmental issuesâ~†. Biochimie, 2009, 91, 1311-1317.	1.3	27
22	Immune- and stress-related transcriptomic responses of Solea senegalensis stimulated with lipopolysaccharide and copper sulphate using heterologous cDNA microarrays. Fish and Shellfish Immunology, 2009, 26, 699-706.	1.6	41
23	Solea senegalensis genes responding to lipopolysaccharide and copper sulphate challenges: Large-scale identification by suppression subtractive hybridization and absolute quantification of transcriptional profiles by real-time RT-PCR. Aquatic Toxicology, 2009, 91, 312-319.	1.9	40
24	Metal-binding molecules in the organs of Mus musculus by size-exclusion chromatography coupled with UV spectroscopy and ICP-MS. Analytical and Bioanalytical Chemistry, 2008, 390, 17-28.	1.9	19
25	Integrated application of transcriptomics, proteomics, and metallomics in environmental studies. Pure and Applied Chemistry, 2008, 80, 2609-2626.	0.9	25
26	Alternative splicing of c-fos pre-mRNA: contribution of the rates of synthesis and degradation to the copy number of each transcript isoform and detection of a truncated c-Fos immunoreactive species. BMC Molecular Biology, 2007, 8, 83.	3.0	26
27	Proteomics in freeâ€living <i>Mus spretus</i> to monitor terrestrial ecosystems. Proteomics, 2007, 7, 4376-4387.	1.3	54
28	Absolute Transcript Expression Signatures ofCypandCstGenes inMus spretusto Detect Environmental Contamination. Environmental Science & Technology, 2006, 40, 3646-3652.	4.6	43
29	Tissue, Species, and Environmental Differences in Absolute Quantities of Murine mRNAs Coding for Alpha, Mu, Omega, Pi, and Theta Glutathione <i>S</i> -Transferases. Gene Expression, 2005, 12, 165-176.	0.5	15
30	Absolute mRNA levels and transcriptional regulation of the mouse testis-specific thioredoxins. Biochemical and Biophysical Research Communications, 2005, 330, 65-74.	1.0	12
31	Transcript copy number of genes for DNA repair and translesion synthesis in yeast: contribution of transcription rate and mRNA stability to the steady-state level of each mRNA along with growth in glucose-fermentative medium. DNA Repair, 2005, 4, 469-478.	1.3	7
32	Absolute transcript levels of thioredoxin- and glutathione-dependent redox systems in Saccharomyces cerevisiae: response to stress and modulation with growth. Biochemical Journal, 2004, 383, 139-147.	1.7	37
33	Absolute Gene Expression Patterns of Thioredoxin and Glutaredoxin Redox Systems in Mouse. Journal of Biological Chemistry, 2003, 278, 45546-45554.	1.6	81
34	Absolute Quantitation of Normal and ROS-Induced Patterns of Gene Expression: An In Vivo Real-Time PCR Study in Mice. Gene Expression, 2003, 11, 23-34.	0.5	35
35	SoxRS Down-Regulation of rob Transcription. Journal of Bacteriology, 2002, 184, 4733-4738.	1.0	31
36	Multiplex Reverse Transcription-Polymerase Chain Reaction for Determining Transcriptional Regulation of Thioredoxin and Glutaredoxin Pathways. Methods in Enzymology, 2002, 347, 441-451.	0.4	19

#	Article	IF	CITATIONS
37	The effectiveness of the O6-alkylguanine-DNA alkyltransferase encoded by the ogtST gene from S. typhimurium in protection against alkylating drugs, resistance to O6-benzylguanine and sensitisation to dibromoalkane genotoxicity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2001, 497, 111-121.	0.9	7
38	Expression Analysis of the nrdHIEF Operon fromEscherichia coli. Journal of Biological Chemistry, 2001, 276, 18031-18037.	1.6	92
39	Oxidative mutagenesis inEscherichia coli strains lacking ROS-scavenging enzymes and/or 8-oxoguanine defenses. , 2000, 35, 22-30.		18
40	Sediment mutagenicity testing: development of substance specific bacterial strains for the detection of mutagenic aromatic nitrogen compounds and oxidative mutagens. Aquatic Ecosystem Health and Management, 2000, 3, 369-378.	0.3	0
41	Hydrogen Peroxide Activates the SoxRS Regulon In Vivo. Journal of Bacteriology, 2000, 182, 6842-6844.	1.0	74
42	Transcriptional Regulation of Clutaredoxin and Thioredoxin Pathways and Related Enzymes in Response to Oxidative Stress. Journal of Biological Chemistry, 2000, 275, 13398-13405.	1.6	119
43	Sediment mutagenicity testing: development of substance specific bacterial strains for the detection of mutagenic aromatic nitrogen compounds and oxidative mutagens. Aquatic Ecosystem Health and Management, 2000, 3, 369-378.	0.3	0
44	Hydrogen peroxide and coffee induce G:C->T:A transversions in the lacl gene of catalase-defective Escherichia coli. Mutagenesis, 1999, 14, 95-102.	1.0	19
45	Human O6 -alkylguanine-DNA alkyltransferase: protection against alkylating agents and sensitization to dibromoalkanes. Carcinogenesis, 1999, 20, 2089-2094.	1.3	19
46	In Vivo Transcription of the <i>Escherichia coli oxyR</i> Regulon as a Function of Growth Phase and in Response to Oxidative Stress. Journal of Bacteriology, 1999, 181, 2759-2764.	1.0	90
47	Mutagen content and metabolic activation of promutagens by molluscs as biomarkers of marine pollution. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 399, 3-15.	0.4	57
48	Influence of DNA repair by (A)BC excinuclease and Ogt alkyltransferase on the distribution of mutations induced byn-propyl-N-nitrosourea inEscherichia coli. , 1998, 31, 82-91.		2
49	Mutagenic activation of aromatic amines by molluscs as a biomarker of marine pollution. , 1998, 31, 282-291.		18
50	In Vivo Transcription of nrdAB Operon and of grxA and fpg Genes Is Triggered inEscherichia coli Lacking both Thioredoxin and Glutaredoxin 1 or Thioredoxin and Glutathione, Respectively. Journal of Biological Chemistry, 1998, 273, 18382-18388.	1.6	34
51	Formation of 8-oxoguanine in cellular DNA of Escherichia coli strains defective in different antioxidant defences. Mutagenesis, 1998, 13, 589-594.	1.0	24
52	DNA sequence analysis of spontaneous laclâ^'d mutations in O6-alkylguanine-DNA alkyltransferase-proficient and -deficient Escherichia coli. Mutagenesis, 1998, 13, 367-373.	1.0	7
53	Role of DNA repair by (A)BC excinuclease and Ogt alkyltransferase in the final distribution of Laclâ^'d mutations induced by N-butyl-N-nitrosourea in Escherichia coli. Mutagenesis, 1998, 13, 507-514.	1.0	6
54	Bacterial and mammalian DNA alkyltransferases sensitize Escherichia coli to the lethal and mutagenic effects of dibromoalkanes. Carcinogenesis, 1997, 18, 1883-1888.	1.3	27

#	Article	IF	CITATIONS
55	The Influence of DNA Repair by Ogt Alkyltransferase on the Distribution of Alkylnitrosourea-Induced Mutations inEscherichia coli. , 1997, 29, 180-188.		11
56	Mutational specificity of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea inEscherichia coli: Comparison of in vivo with in vitro exposure of thesupF gene. , 1997, 30, 65-71.		2
57	Mutation spectra analysis suggests that N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosourea-induced lesions are subject to transcription-coupled repair in Escherichia coli. , 1997, 19, 39-45.		3
58	The Levels of Ribonucleotide Reductase, Thioredoxin, Glutaredoxin 1, and GSH Are Balanced in Escherichia coli K12. Journal of Biological Chemistry, 1996, 271, 19099-19103.	1.6	60
59	Contribution of ogt-encoded alkyltransferase to resistance to chloroethylnitrosoureas in nucleotide excision repair-deficient Escherichia coli. Carcinogenesis, 1996, 17, 1609-1614.	1.3	20
60	Mutational specificity of aflatoxin B1. Comparison of in vivo host-mediated assay with in vitro S9 metabolic activation. Carcinogenesis, 1996, 17, 1997-2002.	1.3	10
61	ogt alkyltransferase enhances dibromoalkane mutagenicity in excision repair–deficientescherichia coli K-12. Molecular Carcinogenesis, 1995, 12, 110-117.	1.3	29
62	Mutational specificity of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea in theEscherichia coli lacl gene ofO6-alkylguanine-DNA alkyltransferase-proficient and -deficient strains. Molecular Carcinogenesis, 1995, 14, 233-239.	1.3	9
63	Metabolic activation of carcinogenic aromatic amines by fish exposed to environmental pollutants. Environmental and Molecular Mutagenesis, 1995, 25, 50-57.	0.9	23
64	Role of classical nitroreductase andO-acetyltransferase on the mutagenicity of nifurtimox and eight derivatives inSalmonella typhimurium. Environmental and Molecular Mutagenesis, 1995, 26, 86-93.	0.9	17
65	The use of the Salmonella BA9 forward mutation assay in sediment quality assessment: mutagenicity of freshly deposited sediments of the River Elbe. Journal of Aquatic Ecosystem Health, 1995, 4, 277-283.	0.4	8
66	Mathematical parameters for quantification of mutational responses in bacteria. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1995, 346, 77-84.	1.2	4
67	DNA repair by Ogt alkyltransferase influences EMS mutational specificity. Carcinogenesis, 1995, 16, 817-821.	1.3	34
68	Fpg protein protects Escherichia coli K-12from mutation induction by the carcinogen 4-nitroquinoline 1-oxide. Carcinogenesis, 1994, 15, 425-429.	1.3	14
69	Effect of ogt expression on mutation induction by methyl-, ethyl- and propylmethanesulphonate in Escherichia coli K12 strains. Molecular Genetics and Genomics, 1994, 242, 744-748.	2.4	15
70	Influence of DNA repair byada andogt alkytransferases on the mutational specificity of alkylating agents. Molecular Carcinogenesis, 1994, 9, 200-209.	1.3	14
71	Mutagenicity testing inSalmonella typhimurium strains possessing both the his reversion and ara forward mutation systems and different levels of classical nitroreductase or O-acetyltransferase activities. Environmental and Molecular Mutagenesis, 1994, 23, 286-293.	0.9	14
72	Promutagen activation by fish liver as a biomarker of littoral pollution. Environmental and Molecular Mutagenesis, 1994, 24, 116-123.	0.9	28

#	Article	IF	CITATIONS
73	Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9813-9817.	3.3	181
74	Null thioredoxin and glutaredoxin Escherichia coli K-12 mutants have no enhanced sensitivity to mutagens due to a new CSH-dependent hydrogen donor and high increases in ribonucleotide reductase activity. Journal of Biological Chemistry, 1994, 269, 16631-16637.	1.6	25
75	Null thioredoxin and glutaredoxin Escherichia coli K-12 mutants have no enhanced sensitivity to mutagens due to a new CSH-dependent hydrogen donor and high increases in ribonucleotide reductase activity. Journal of Biological Chemistry, 1994, 269, 16631-7.	1.6	23
76	Biochemical Indicators of Oxidative Stress in Fish from Polluted Littoral Areas. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50, 2568-2573.	0.7	187
77	Mutagenic and lethal effects of halogenated methanes in the Ara test of Salmonella typhimurium: quantitative relationship with chemical reactivity. Mutagenesis, 1993, 8, 127-131.	1.0	14
78	Genetic differences between the standard Ames tester strains TA100 and TA98. Mutagenesis, 1993, 8, 527-532.	1.0	23
79	Biochemical and genetic indices of marine pollution in Spanish littoral. Science of the Total Environment, 1993, 134, 109-116.	3.9	36
80	Mutagenesis in Escherichia coli K-12 mutants defective in superoxide dismutase or catalase. Carcinogenesis, 1993, 14, 237-244.	1.3	31
81	A method for selection of forward mutations in supF gene carried by shuttle-vector plasmids. Carcinogenesis, 1993, 14, 303-305.	1.3	28
82	Study on the mutagenicity of brandy with the Ara test. Mutagenesis, 1992, 7, 77-81.	1.0	1
83	Direct-acting mutagenic activity in white, rosé, and red wines with the ara test ofsalmonella typhimurium. Environmental and Molecular Mutagenesis, 1992, 19, 14-20.	0.9	10
84	Metal, mutagenicity, and biochemical studies on bivalve molluscs from Spanish coasts. Environmental and Molecular Mutagenesis, 1992, 19, 112-124.	0.9	78
85	Mutagenesis and DNA repair for alkylation damages in <i>Escherichia coli</i> kâ€12. Environmental and Molecular Mutagenesis, 1992, 19, 288-296.	0.9	32
86	Biochemical effects of environmental pollution in fishes from the Spanish South-Atlantic littoral. Biochemical Society Transactions, 1991, 19, 301S-301S.	1.6	31
87	The involvement of reactive oxygen species in the direct-acting mutagenicity of wine. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 251, 115-121.	0.4	10
88	Study on the mutagenic activity of 13 bioflavonoids with the Salmonella Ara test. Mutagenesis, 1991, 6, 289-295.	1.0	40
89	An association between mutagenicity of the Ara test of Salmonella typhimurium and carcinogenicity in rodents for 16 halogenated aliphatic hydrocarbons. Mutagenesis, 1991, 6, 199-205.	1.0	27
90	Influence of S9 mix on the expression of mutants in the l-arabinose resistance test of Salmonella typhimurium. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1990, 243, 303-308.	1.2	1

#	Article	IF	CITATIONS
91	Mutagenesis inEscherichia coli lacking catalase. Environmental and Molecular Mutagenesis, 1990, 15, 184-189.	0.9	30
92	Quantitative relationship between mutagenic potency in the Ara test of Salmonella typhimurium and carcinogenic potency in rodents. A study of 11 direct-acting monofunctional alkylating agents. Carcinogenesis, 1990, 11, 975-980.	1.3	9
93	Mutagenesis studies with catalase- and/or glutathione-deficient strains of Escherichia coli. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1989, 216, 270.	0.4	2
94	Simple method for precise determination of chemical lethality in the l-arabinose resistance test of Salmonella typhimurium. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 226, 175-180.	1.2	2
95	Study of the causes of direct-acting mutagenicity in coffee and tea using the Ara test in Salmonella typhimurium. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1988, 201, 89-96.	0.4	53
96	Response of the l-arabinose forward mutation assay of Salmonella typhimurium to frameshift-type mutagens. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1988, 203, 39-45.	0.4	9
97	Study on the mutagenicity of nifurtimox and eight derivatives with the l-arabinose resistance test of Salmonella typhimurium. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1988, 206, 193-200.	1.2	21
98	Mutagenicity of red, wine in the L-arabinose resistance test with Salmonella typhimurium. Mutagenesis, 1988, 3, 497-502.	1.0	10
99	L-arabinose resistance test with Salmonella typhimurium as a primary tool for carcinogen screening. Cancer Research, 1988, 48, 907-12.	0.4	28
100	Implication of active oxygen species in the direct-acting mutagenicity of tea. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1987, 188, 251-257.	1.2	26
101	Glutathione status and sensitivity to GSH-reacting compounds of Escherichia coli strains deficient in glutathione metabolism and/or catalase activity. Molecular and Cellular Biochemistry, 1987, 73, 61-8.	1.4	27
102	Coffee is highly mutagenic in the L-arabinose resistance test inSalmonella typhimurium. Environmental Mutagenesis, 1987, 9, 251-260.	1.4	14
103	Conditions for the optimal use of the L-arabinose-resistance mutagenesis test with Salmonella typhimurium. Mutagenesis, 1986, 1, 267-273.	1.0	33
104	Oxidative mutagens specific for A·T base pairs induce forward mutations to L-arabinose resistance in Salmonella typhimurium. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1985, 147, 153-163.	0.4	54
105	Comparison of a forward and a reverse mutation assay in Salmonella typhimurium measuring L-arabinose resistance and histidine prototrophy EMBO Journal, 1984, 3, 1435-1440.	3.5	31
106	The L-Arabinose Resistance Test with Salmonella typhimurium. , 1984, , 89-109.		6
107	Comparison of a forward and a reverse mutation assay in Salmonella typhimurium measuring L-arabinose resistance and histidine prototrophy. EMBO Journal, 1984, 3, 1435-40.	3.5	4
108	Mutants ofEscherichia coli sensitive to hydrogen peroxide. Current Microbiology, 1983, 8, 251-253.	1.0	15

#	Article	IF	CITATIONS
109	Double mutants with both His reversion and Ara forward mutation systems of Salmonella. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 105, 383-386.	1.2	17
110	The L-arabinose-resistance test with salmonella typhimurium strain SV3 selects forward mutations at several ara genes. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1979, 64, 249-258.	0.4	29
111	Natulan induces forward mutations to l-arabinose-resistance in Salmonella typhimurium. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1979, 67, 189-192.	1.2	22
112	Forward mutations to arabinose resistance in Salmonella typhimurium strains. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1978, 54, 311-321.	0.4	41
113	A mutagen assay detecting forward mutations in an arabinose-sensitive strain of Salmonella typhimurium. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1978, 54, 121-129.	0.4	51
114	New Methodologies for Assessing the Presence and Ecological Effects of Pesticides in Donl̊fana National Park (SW Spain). , 0, , .		2