Cody S Szuwalski

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3652068/publications.pdf
Version: 2024-02-01

Advancing multispecies fishery management in China: Lessons from international experience.
Aquaculture and Fisheries, 2023, 8, 351-362.

Estimating time-variation in confounded processes in population dynamics modeling: A case study for snow crab in the eastern Bering Sea. Fisheries Research, 2022, 251, 106298.

A framework for assessing harvest strategy choice when considering multiple interacting fisheries
3 and a changing environment: The example of eastern Bering Sea crab stocks. Fisheries Research, 2022, $1.7 \quad 8$ 252, 106338.

4 Climate change and the future productivity and distribution of crab in the Bering Sea. ICES Journal of Marine Science, 2021, 78, 502-515.

Identifying management actions that promote sustainable fisheries. Nature Sustainability, 2021, 4, 440-449.

Range edges of North American marine species are tracking temperature over decades. Global Change
Biology, 2021, 27, 3145-3156.

Models of marine protected areas must explicitly address spatial dynamics. Proceedings of the
$7 \quad$ National Academy of Sciences of the United States of America, 2021, 118,

Drivers of recruitment dynamics in Japanese major fisheries resources: Effects of environmental conditions and spawner abundance. Fisheries Research, 2020, 221, 105353.
1.7

16
8

9 A novel spatiotemporal stock assessment framework to better address fineâ€scale species distributions:
9 Development and simulation testing. Fish and Fisheries, 2020, 21, 350-367.

10 Integrated Modeling to Evaluate Climate Change Impacts on Coupled Social-Ecological Systems in Alaska. Frontiers in Marine Science, 2020, 6, .
2.5

59

11 Life history changes and fisheries assessment performance: a case study for small yellow croaker. ICES Journal of Marine Science, 2020, 77, 645-654.

2.5

11

Effective fisheries management instrumental in improving fish stock status. Proceedings of the
National Academy of Sciences of the United States of America, 2020, 117, 2218-2224.
7.1

434

Marine seafood production via intense exploitation and cultivation in China: Costs, benefits, and risks. PLoS ONE, 2020, 15, e0227106.

Historical dynamics of the demersal fish community in the East and South China Seas. Marine and Freshwater Research, 2020, 71, 1073.

19	Adaptive comanagement to achieve climateâ€ready fisheries. Conservation Letters, 2018, 11, e12452.	5.7	42
20	Corrigendum to â€œWhen does fishing forage species affect their predators?â€•[Fish. Res. 191 (2017) 211 â $\epsilon^{\prime \prime 221] . ~ F i s h e r i e s ~ R e s e a r c h, ~ 2018, ~ 206, ~} 309$.	1.7	1
21	Reducing retrospective patterns in stock assessment and impacts on management performance. ICES Journal of Marine Science, 2018, 75, 596-609.	2.5	33

22 When does fishing forage species affect their predators?. Fisheries Research, 2017, 191, 211-221.
High fishery catches through trophic cascades in China. Proceedings of the National Academy of
Sciences of the United States of America, 2017, 114, 717-721.

```
29 Is spawning stock biomass a robust proxy for reproductive potential?. Fish and Fisheries, 2016, 17,
596-616.
```

$5.3 \quad 42$

30 Climate change and non-stationary population processes in fisheries management. ICES Journal of Marine Science, 2016, 73, 1297-1305.
2.5

96

31 Global fishery prospects under contrasting management regimes. Proceedings of the National
$7.1 \quad 485$
Academy of Sciences of the United States of America, 2016, 113, 5125-5129.

An integrated stock assessment for red spiny lobster (Panulirus penicillatus) from the Galapagos
1.7

14
Marine Reserve. Fisheries Research, 2016, 177, 82-94.

Changing fisheries productivity and food security. Proceedings of the National Academy of Sciences
of the United States of America, 2016, 113, E1773-4.
7.1

7

The importance of length and age composition data in statistical age-structured models for marine species. ICES Journal of Marine Science, 2015, 72, 31-43.
2.5

49

Looking in the rear-view mirror: bias and retrospective patterns in integrated, age-structured stock
assessment models. ICES Journal of Marine Science, 2015, 72, 99-110.
assessment models. ICES Journal of Marine Science, 2015, 72, 99-110.
2.5

103

Time-varying natural mortality in fisheries stock assessment models: identifying a default approach. ICES Journal of Marine Science, 2015, 72, 137-150.

