Cody S Szuwalski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3652068/publications.pdf

Version: 2024-02-01

331670 243625 2,721 45 21 44 citations h-index g-index papers 45 45 45 2819 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Global fishery prospects under contrasting management regimes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5125-5129.	7.1	485
2	Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2218-2224.	7.1	434
3	Examining common assumptions about recruitment: a metaâ€analysis of recruitment dynamics for worldwide marine fisheries. Fish and Fisheries, 2015, 16, 633-648.	5.3	218
4	Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES Journal of Marine Science, 2014, 71, 2208-2220.	2.5	177
5	Joint dynamic species distribution models: a tool for community ordination and spatioâ€ŧemporal monitoring. Global Ecology and Biogeography, 2016, 25, 1144-1158.	5.8	148
6	High fishery catches through trophic cascades in China. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 717-721.	7.1	116
7	When does fishing forage species affect their predators?. Fisheries Research, 2017, 191, 211-221.	1.7	112
8	Looking in the rear-view mirror: bias and retrospective patterns in integrated, age-structured stock assessment models. ICES Journal of Marine Science, 2015, 72, 99-110.	2.5	103
9	Climate change and non-stationary population processes in fisheries management. ICES Journal of Marine Science, 2016, 73, 1297-1305.	2.5	96
10	Time-varying natural mortality in fisheries stock assessment models: identifying a default approach. ICES Journal of Marine Science, 2015, 72, 137-150.	2.5	81
11	Fisheries management for regime-based ecosystems: a management strategy evaluation for the snow crab fishery in the eastern Bering Sea. ICES Journal of Marine Science, 2013, 70, 955-967.	2.5	62
12	Integrated Modeling to Evaluate Climate Change Impacts on Coupled Social-Ecological Systems in Alaska. Frontiers in Marine Science, 2020, 6, .	2.5	59
13	Identifying management actions that promote sustainable fisheries. Nature Sustainability, 2021, 4, 440-449.	23.7	56
14	The importance of length and age composition data in statistical age-structured models for marine species. ICES Journal of Marine Science, 2015, 72, 31-43.	2.5	49
15	Is spawning stock biomass a robust proxy for reproductive potential?. Fish and Fisheries, 2016, 17, 596-616.	5.3	42
16	Adaptive comanagement to achieve climateâ€ready fisheries. Conservation Letters, 2018, 11, e12452.	5.7	42
17	Range edges of North American marine species are tracking temperature over decades. Global Change Biology, 2021, 27, 3145-3156.	9.5	38
18	Global forage fish recruitment dynamics: A comparison of methods, time-variation, and reverse causality. Fisheries Research, 2019, 214, 56-64.	1.7	35

#	Article	IF	CITATIONS
19	Reducing retrospective patterns in stock assessment and impacts on management performance. ICES Journal of Marine Science, 2018, 75, 596-609.	2.5	33
20	Regime shifts and recruitment dynamics of snow crab, <i>Chionoecetes opilio, </i> in the eastern Bering Sea. Fisheries Oceanography, 2013, 22, 345-354.	1.7	31
21	A novel spatiotemporal stock assessment framework to better address fineâ€scale species distributions: Development and simulation testing. Fish and Fisheries, 2020, 21, 350-367.	5.3	26
22	Marine seafood production via intense exploitation and cultivation in China: Costs, benefits, and risks. PLoS ONE, 2020, 15, e0227106.	2.5	23
23	Environment drives forage fish productivity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3314-E3315.	7.1	22
24	An Evaluation of Harvest Control Methods for Fishery Management. Reviews in Fisheries Science and Aquaculture, 2016, 24, 244-263.	9.1	21
25	An evaluation of stock–recruitment proxies and environmental change points for implementing the US Sustainable Fisheries Act. Fisheries Research, 2014, 157, 28-40.	1.7	18
26	Identifying research priorities for management under uncertainty: The estimation ability of the stock assessment method used for eastern Bering Sea snow crab (Chionoecetes opilio). Fisheries Research, 2012, 134-136, 82-94.	1.7	17
27	Climate change and the future productivity and distribution of crab in the Bering Sea. ICES Journal of Marine Science, 2021, 78, 502-515.	2.5	17
28	Drivers of recruitment dynamics in Japanese major fisheries resources: Effects of environmental conditions and spawner abundance. Fisheries Research, 2020, 221, 105353.	1.7	16
29	Can an aggregate assessment reflect the dynamics of a spatially structured stock? Snow crab in the eastern Bering Sea as a case study. Fisheries Research, 2015, 164, 135-142.	1.7	14
30	An integrated stock assessment for red spiny lobster (Panulirus penicillatus) from the Galapagos Marine Reserve. Fisheries Research, 2016, 177, 82-94.	1.7	14
31	Overcoming long Bayesian run times in integrated fisheries stock assessments. ICES Journal of Marine Science, 2019, 76, 1477-1488.	2.5	14
32	Global fishery dynamics are poorly predicted by classical models. Fish and Fisheries, 2017, 18, 1085-1095.	5.3	13
33	Challenges to Reintroduction of a Captive Population of Topeka Shiner (<i>Notropis topeka</i>) into Former Habitats in Kansas. Transactions of the Kansas Academy of Science, 2016, 119, 83-92.	0.1	11
34	Describing ecosystem contexts with singleâ€species models: a theoretical synthesis for fisheries. Fish and Fisheries, 2017, 18, 264-284.	5.3	11
35	Life history changes and fisheries assessment performance: a case study for small yellow croaker. ICES Journal of Marine Science, 2020, 77, 645-654.	2.5	11
36	Comment on "Impacts of historical warming on marine fisheries production― Science, 2019, 365, .	12.6	8

3

#	Article	IF	CITATIONS
37	A framework for assessing harvest strategy choice when considering multiple interacting fisheries and a changing environment: The example of eastern Bering Sea crab stocks. Fisheries Research, 2022, 252, 106338.	1.7	8
38	Production is a poor metric for identifying regime-like behavior in marine stocks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1436.	7.1	7
39	Changing fisheries productivity and food security. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1773-4.	7.1	7
40	Advancing multispecies fishery management in China: Lessons from international experience. Aquaculture and Fisheries, 2023, 8, 351-362.	2.2	7
41	Effects of environmental change and exploitation on marine communities around the Zhoushan archipelago: A functional group perspective. Estuarine, Coastal and Shelf Science, 2019, 217, 185-195.	2.1	6
42	Models of marine protected areas must explicitly address spatial dynamics. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	6
43	Estimating time-variation in confounded processes in population dynamics modeling: A case study for snow crab in the eastern Bering Sea. Fisheries Research, 2022, 251, 106298.	1.7	4
44	Historical dynamics of the demersal fish community in the East and South China Seas. Marine and Freshwater Research, 2020, 71, 1073.	1.3	2
45	Corrigendum to "When does fishing forage species affect their predators?―[Fish. Res. 191 (2017) 211–221]. Fisheries Research, 2018, 206, 309.	1.7	1