
Marjana Regvar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3651715/publications.pdf Version: 2024-02-01

MADIANA RECUAD

#	Article	IF	CITATIONS
1	Original Leaf Colonisers Shape Fungal Decomposer Communities of Phragmites australis in Intermittent Habitats. Journal of Fungi (Basel, Switzerland), 2022, 8, 284.	1.5	6
2	Decontamination and Germination of Buckwheat Grains upon Treatment with Oxygen Plasma Glow and Afterglow. Plants, 2022, 11, 1366.	1.6	2
3	Root-associated community composition and co-occurrence patterns of fungi in wild grapevine. Fungal Ecology, 2021, 50, 101034.	0.7	5
4	Dataset on endophytic and rhizoplane fungi on the roots of wild grapevine in Croatia and Bosnia and Herzegovina. Data in Brief, 2021, 34, 106692.	0.5	0
5	Cold Plasma Affects Germination and Fungal Community Structure of Buckwheat Seeds. Plants, 2021, 10, 851.	1.6	29
6	Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. Journal of Fungi (Basel, Switzerland), 2021, 7, 650.	1.5	26
7	1,8-dihydroxy naphthalene (DHN) - melanin confers tolerance to cadmium in isolates of melanised dark septate endophytes. Ecotoxicology and Environmental Safety, 2021, 222, 112493.	2.9	16
8	Contrasting allocation of magnesium, calcium and manganese in leaves of tea (Camellia sinensis (L.)) Tj ETQq0 (Toxicology, 2020, 135, 110974.	0 rgBT /0 1.8	Overlock 10 Tf 15
9	Genetic Structure and Relationships among Wild and Cultivated Grapevines from Central Europe and Part of the Western Balkan Peninsula. Genes, 2020, 11, 962.	1.0	16
10	Recent Advances in 2D Imaging of Element Distribution in Plants by Focused Beam Techniques. , 2019, , 169-207.		2
11	Tissue-specific element profiles in Scots pine (Pinus sylvestris L.) needles. Trees - Structure and Function, 2019, 33, 91-101.	0.9	12
12	High incidence of arbuscular mycorrhizal fungi in rare and endangered wild grapevine. Plant Biosystems, 2018, 152, 1075-1078.	0.8	1
13	Foliar surface free energy affects platinum nanoparticle adhesion, uptake, and translocation from leaves to roots in arugula and escarole. Environmental Science: Nano, 2018, 5, 520-532.	2.2	38
14	Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Applied Soil Ecology, 2017, 113, 86-95.	2.1	39
15	Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea. Chemosphere, 2017, 180, 178-185.	4.2	33
16	What Have We Learnt from Studying Mycorrhizal Colonisation of Wetland Plant Species?. , 2017, , 291-304.		4
17	NEW INSIGHTS INTO STRUCTURES AND COMPOSITION OF PLANT FOOD MATERIALS. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 7, 57-61.	0.4	3
18	Mineral and Trace Element Composition and Importance for Nutritional Value of Buckwheat Grain, Groats, and Sprouts. , 2016, , 261-271.		6

Marjana Regvar

#	Article	IF	CITATIONS
19	Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism. Fungal Biology, 2016, 120, 666-678.	1.1	20
20	Composition of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural mineral-rich water. Journal of Cereal Science, 2016, 69, 9-16.	1.8	33
21	Molecular imaging of cannabis leaf tissue with MeV-SIMS method. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 205-210.	0.6	20
22	Water-level fluctuations as a driver of Phragmites australis primary productivity, litter decomposition, and fungal root colonisation in an intermittent wetland. Hydrobiologia, 2016, 774, 69-80.	1.0	36
23	Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe. Nuclear Instruments & Methods in Physics Research B, 2015, 348, 147-151.	0.6	27
24	Importance of soil and vineyard management in the determination of grapevine mineral composition. Science of the Total Environment, 2015, 505, 724-731.	3.9	66
25	Effects of non-chemical soil fumigant treatments on root colonisation with arbuscular mycorrhizal fungi and strawberry fruit production. Crop Protection, 2014, 55, 35-41.	1.0	18
26	Biochemical characterization of cell types within leaves of metal-hyperaccumulating Noccaea praecox (Brassicaceae). Plant and Soil, 2013, 373, 157-171.	1.8	26
27	Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L Plant and Soil, 2013, 370, 593-604.	1.8	102
28	Micro-PIXE on thin plant tissue samples in frozen hydrated state: A novel addition to JSI nuclear microprobe. Nuclear Instruments & Methods in Physics Research B, 2013, 306, 140-143.	0.6	24
29	Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza, 2013, 23, 209-219.	1.3	38
30	Metallophyte status of violets of the section Melanium. Chemosphere, 2013, 93, 1844-1855.	4.2	18
31	The fate of arsenic, cadmium and lead in Typha latifolia: A case study on the applicability of micro-PIXE in plant ionomics. Journal of Hazardous Materials, 2013, 248-249, 371-378.	6.5	50
32	The arbuscular mycorrhizal fungus Glomus mosseae alleviates autotoxic effects in maize (Zea mays L.). European Journal of Soil Biology, 2013, 58, 59-65.	1.4	18
33	On the distribution and evaluation of Na, Mg and Cl in leaves of selected halophytes. Nuclear Instruments & Methods in Physics Research B, 2013, 306, 144-149.	0.6	14
34	Spatially resolved distributions of the mineral elements in the grain of tartary buckwheat (Fagopyrum) Tj ETQq0	0 0 rgBT /0 2.9	Overlock 10 T

35	Germination characteristics of Salicornia patula Duval-Jouve, S. emerici Duval-Jouve, and S. veneta Pign. et Lausi and their occurrence in Croatia. Acta Botanica Croatica, 2013, 72, 347-358.	0.3	13
36	Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (<i>Triticum aestivum</i>) grain. Journal of the Royal Society Interface, 2013, 10, 20130296.	1.5	32

MARJANA REGVAR

#	Article	IF	CITATIONS
37	Impact of double Zn and Se biofortification of wheat plants on the element concentrations in the grain. Plant, Soil and Environment, 2013, 59, 316-321.	1.0	15
38	Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE. Metallomics, 2012, 4, 333.	1.0	37
39	Use of micro-PIXE to determine spatial distributions of copper in Brassica carinata plants exposed to CuSO4 or CuEDDS. Science of the Total Environment, 2012, 427-428, 339-346.	3.9	15
40	UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Open Life Sciences, 2012, 7, 275-283.	0.6	26
41	Metals and Metalloids Detoxi—cation Mechanisms in Plants: Physiological and Biochemical Aspects. , 2012, , 522-545.		2
42	Improved Lateral Discrimination in Screening the Elemental Composition of Buckwheat Grain by Micro-PIXE. Journal of Agricultural and Food Chemistry, 2011, 59, 1275-1280.	2.4	23
43	Micro-PIXE study of Ag in digestive glands of a nano-Ag fed arthropod (Porcellio scaber, Isopoda,) Tj ETQq1 1 0.78	4314 rgBT 0.6	lQverlock
44	Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. Journal of Plant Research, 2011, 124, 165-172.	1.2	103
45	New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. Journal of Experimental Botany, 2011, 62, 3929-3939.	2.4	91
46	The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 2010, 20, 445-457.	1.3	79
47	Molecular diversity and metal accumulation of different Thlaspi praecox populations from Slovenia. Plant and Soil, 2010, 330, 195-205.	1.8	21
48	Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant and Soil, 2010, 330, 345-356.	1.8	74
49	Cd induced redistribution of elements within leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2205-2210.	0.6	16
50	The Presence of Mycorrhiza in Different Habitats of an Intermittent Aquatic Ecosystem. , 2010, , 299-308.		2
51	Arbuscular Mycorrhiza, Heavy Metal,and Salt Tolerance. Soil Biology, 2010, , 87-111.	0.6	21
52	Quantitative Analyses of Trace Elements in Environmental Samples: Options and (Im)possibilities. Soil Biology, 2010, , 113-138.	0.6	4
53	At the Crossroads of Metal Hyperaccumulation and Glucosinolates: Is There Anything Out There?. Soil Biology, 2010, , 139-161.	0.6	6
54	Low-energy X-ray fluorescence microscopy opening new opportunities for bio-related research. Journal of the Royal Society Interface, 2009, 6, S641-7.	1.5	76

MARJANA REGVAR

#	Article	IF	CITATIONS
55	Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Science of the Total Environment, 2009, 407, 6179-6187.	3.9	43
56	Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of SeÄovlje salterns. Soil Biology and Biochemistry, 2009, 41, 1847-1856.	4.2	55
57	Physiological responses to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species. Environmental and Experimental Botany, 2009, 66, 479-486.	2.0	54
58	Photon-harvesting efficiency and arbuscular mycorrhiza in amphibious plants. Photosynthetica, 2009, 47, 61-67.	0.9	14
59	Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant and Soil, 2009, 314, 25-34.	1.8	38
60	Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh. Biology and Fertility of Soils, 2009, 45, 573-583.	2.3	26
61	Application of micro-PIXE, MRI and light microscopy for research in wood science and dendroecology. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2157-2162.	0.6	3
62	Elemental analysis of edible grains by micro-PIXE: Common buckwheat case study. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2884-2889.	0.6	47
63	In vitro propagation of European aspen (Populus tremula L.) from axillary buds via organogenesis. Scientia Horticulturae, 2009, 121, 109-112.	1.7	17
64	ROOTS OF METAL HYPERACCUMULATING POPULATION OFTHLASPI PRAECOX(BRASSICACEAE) HARBOUR ARBUSCULAR MYCORRHIZAL AND OTHER FUNGI UNDER EXPERIMENTAL CONDITIONS. International Journal of Phytoremediation, 2009, 11, 347-359.	1.7	19
65	Micro-PIXE Analysis for Localization and Quantification of Elements in Roots of Mycorrhizal Metal-Tolerant Plants. Soil Biology, 2009, , 227-242.	0.6	9
66	Glucosinolate Profiles Change During the Life Cycle and Mycorrhizal Colonization in a Cd/Zn Hyperaccumulator Thlaspi praecox (Brassicaceae). Journal of Chemical Ecology, 2008, 34, 1038-1044.	0.9	27
67	Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum) Tj ETQq1 1	0.784314 1.3	rgBT /Overlo 25
68	Early defence reactions in Norway spruce seedlings inoculated with the mycorrhizal fungus Pisolithus tinctorius (Persoon) Coker & Couch and the pathogen Heterobasidion annosum (Fr.) Bref Trees - Structure and Function, 2008, 22, 861-868.	0.9	13
69	Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 1240-1247.	1.5	128
70	Spatial distribution of cadmium in leaves of metal hyperaccumulating <i>Thlaspi praecox</i> using microâ€PIXE. New Phytologist, 2008, 179, 712-721.	3.5	91
71	Comparison of essential and nonâ€essential element distribution in leaves of the Cd/Zn hyperaccumulator <i>Thlaspi praecox</i> as revealed by microâ€PIXE. Plant, Cell and Environment, 2008, 31, 1484-1496.	2.8	114
72	Recent Advances in Understanding of Plant Responses to Excess Metals: Exposure, Accumulation, and		2

Marjana Regvar

#	Article	IF	CITATIONS
73	Arbuscular Mycorrhiza in Metal Hyperaccumulating Plants. , 2008, , 261-280.		3
74	Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environmental Pollution, 2007, 147, 50-59.	3.7	76
75	Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere, 2007, 69, 1602-1609.	4.2	50
76	Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 2007, 68, 139-146.	1.4	557
77	Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquatic Botany, 2006, 85, 331-336.	0.8	68
78	Vegetational and mycorrhizal successions at a metal polluted site: Indications for the direction of phytostabilisation?. Environmental Pollution, 2006, 144, 976-984.	3.7	69
79	Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 2006, 139, 362-371.	3.7	175
80	Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant and Soil, 2006, 288, 333-341.	1.8	69
81	Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 2005, 133, 233-242.	3.7	260
82	Inoculation ofRhododendron cv. Belle-Heller with two strains ofPhialocephala fortinii in two different substrates. Folia Geobotanica, 2003, 38, 191-200.	0.4	38
83	Effect of AMF inoculum from field isolates on the yield of green pepper, parsley, carrot, and tomato. Folia Geobotanica, 2003, 38, 223-234.	0.4	42
84	Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. Journal of Plant Physiology, 2003, 160, 615-626.	1.6	111
85	Title is missing!. Plant Growth Regulation, 2002, 36, 253-260.	1.8	21
86	Jasmonic acid affects mycorrhization of spruce seedlings with Laccaria laccata. Trees - Structure and Function, 1997, 11, 511-514.	0.9	2
87	Jasmonic acid affects mycorrhization of spruce seedlings with. Trees - Structure and Function, 1997, 11, 511.	0.9	11
88	Changes in root growth patterns of (Picea abies) spruce roots by inoculation with an ectomycorrhizal fungusPisolithus tinctorius and jasmonic acid treatment. Trees - Structure and Function, 1996, 10, 410-414.	0.9	13
89	Effects of jasmonic acid on mycorrhizal Allium sativum. New Phytologist, 1996, 134, 703-707.	3.5	58

90