Marjana Regvar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3651715/publications.pdf

Version: 2024-02-01

90 papers 3,846 citations

126858 33 h-index 60 g-index

94 all docs 94 docs citations

times ranked

94

3988 citing authors

#	Article	IF	CITATIONS
1	Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 2007, 68, 139-146.	1.4	557
2	Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 2005, 133, 233-242.	3.7	260
3	Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 2006, 139, 362-371.	3.7	175
4	Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 1240-1247.	1.5	128
5	Comparison of essential and nonâ€essential element distribution in leaves of the Cd/Zn hyperaccumulator <i>Thlaspi praecox</i> as revealed by microâ€PIXE. Plant, Cell and Environment, 2008, 31, 1484-1496.	2.8	114
6	Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. Journal of Plant Physiology, 2003, 160, 615-626.	1.6	111
7	Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. Journal of Plant Research, 2011, 124, 165-172.	1.2	103
8	Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L Plant and Soil, 2013, 370, 593-604.	1.8	102
9	Spatial distribution of cadmium in leaves of metal hyperaccumulating <i>Thlaspi praecox</i> using microâ€PIXE. New Phytologist, 2008, 179, 712-721.	3.5	91
10	New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. Journal of Experimental Botany, 2011, 62, 3929-3939.	2.4	91
11	The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 2010, 20, 445-457.	1.3	79
12	Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environmental Pollution, 2007, 147, 50-59.	3.7	76
13	Low-energy X-ray fluorescence microscopy opening new opportunities for bio-related research. Journal of the Royal Society Interface, 2009, 6, S641-7.	1.5	76
14	Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant and Soil, 2010, 330, 345-356.	1.8	74
15	Vegetational and mycorrhizal successions at a metal polluted site: Indications for the direction of phytostabilisation?. Environmental Pollution, 2006, 144, 976-984.	3.7	69
16	Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant and Soil, 2006, 288, 333-341.	1.8	69
17	Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquatic Botany, 2006, 85, 331-336.	0.8	68
18	Importance of soil and vineyard management in the determination of grapevine mineral composition. Science of the Total Environment, 2015, 505, 724-731.	3.9	66

#	Article	IF	Citations
19	Effects of jasmonic acid on mycorrhizal Allium sativum. New Phytologist, 1996, 134, 703-707.	3.5	58
20	Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of SeÄovlje salterns. Soil Biology and Biochemistry, 2009, 41, 1847-1856.	4.2	55
21	Physiological responses to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species. Environmental and Experimental Botany, 2009, 66, 479-486.	2.0	54
22	Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere, 2007, 69, 1602-1609.	4.2	50
23	The fate of arsenic, cadmium and lead in Typha latifolia: A case study on the applicability of micro-PIXE in plant ionomics. Journal of Hazardous Materials, 2013, 248-249, 371-378.	6.5	50
24	Elemental analysis of edible grains by micro-PIXE: Common buckwheat case study. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2884-2889.	0.6	47
25	Spatially resolved distributions of the mineral elements in the grain of tartary buckwheat (Fagopyrum) Tj ETQq1	1 0.78431 2.9	.4 rgBT /Over
26	Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Science of the Total Environment, 2009, 407, 6179-6187.	3.9	43
27	Effect of AMF inoculum from field isolates on the yield of green pepper, parsley, carrot, and tomato. Folia Geobotanica, 2003, 38, 223-234.	0.4	42
28	Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Applied Soil Ecology, 2017, 113, 86-95.	2.1	39
29	Inoculation ofRhododendron cv. Belle-Heller with two strains ofPhialocephala fortinii in two different substrates. Folia Geobotanica, 2003, 38, 191-200.	0.4	38
30	Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant and Soil, 2009, 314, 25-34.	1.8	38
31	Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza, 2013, 23, 209-219.	1.3	38
32	Foliar surface free energy affects platinum nanoparticle adhesion, uptake, and translocation from leaves to roots in arugula and escarole. Environmental Science: Nano, 2018, 5, 520-532.	2.2	38
33	Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE. Metallomics, 2012, 4, 333.	1.0	37
34	Water-level fluctuations as a driver of Phragmites australis primary productivity, litter decomposition, and fungal root colonisation in an intermittent wetland. Hydrobiologia, 2016, 774, 69-80.	1.0	36
35	Composition of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural mineral-rich water. Journal of Cereal Science, 2016, 69, 9-16.	1.8	33
36	Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea. Chemosphere, 2017, 180, 178-185.	4.2	33

#	Article	IF	Citations
37	Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (<i>Triticum aestivum</i>) grain. Journal of the Royal Society Interface, 2013, 10, 20130296.	1.5	32
38	Cold Plasma Affects Germination and Fungal Community Structure of Buckwheat Seeds. Plants, 2021, 10, 851.	1.6	29
39	Glucosinolate Profiles Change During the Life Cycle and Mycorrhizal Colonization in a Cd/Zn Hyperaccumulator Thlaspi praecox (Brassicaceae). Journal of Chemical Ecology, 2008, 34, 1038-1044.	0.9	27
40	Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe. Nuclear Instruments & Methods in Physics Research B, 2015, 348, 147-151.	0.6	27
41	Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh. Biology and Fertility of Soils, 2009, 45, 573-583.	2.3	26
42	UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Open Life Sciences, 2012, 7, 275-283.	0.6	26
43	Biochemical characterization of cell types within leaves of metal-hyperaccumulating Noccaea praecox (Brassicaceae). Plant and Soil, 2013, 373, 157-171.	1.8	26
44	Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. Journal of Fungi (Basel, Switzerland), 2021, 7, 650.	1.5	26
45	Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum) Tj ETQq1 1 ().784314 i 1.3	gBT_/Overloc
46	Micro-PIXE on thin plant tissue samples in frozen hydrated state: A novel addition to JSI nuclear microprobe. Nuclear Instruments & Methods in Physics Research B, 2013, 306, 140-143.	0.6	24
47	Improved Lateral Discrimination in Screening the Elemental Composition of Buckwheat Grain by Micro-PIXE. Journal of Agricultural and Food Chemistry, 2011, 59, 1275-1280.	2.4	23
48	Micro-PIXE study of Ag in digestive glands of a nano-Ag fed arthropod (Porcellio scaber, Isopoda,) Tj ETQq0 0 0 r	gBT/Overl	ock 10 Tf 50
49	Title is missing!. Plant Growth Regulation, 2002, 36, 253-260.	1.8	21
50	Molecular diversity and metal accumulation of different Thlaspi praecox populations from Slovenia. Plant and Soil, 2010, 330, 195-205.	1.8	21
51	Arbuscular Mycorrhiza, Heavy Metal,and Salt Tolerance. Soil Biology, 2010, , 87-111.	0.6	21
52	Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism. Fungal Biology, 2016, 120, 666-678.	1.1	20
53	Molecular imaging of cannabis leaf tissue with MeV-SIMS method. Nuclear Instruments & Methods in Physics Research B, 2016, 371, 205-210.	0.6	20
54	ROOTS OF METAL HYPERACCUMULATING POPULATION OFTHLASPI PRAECOX(BRASSICACEAE) HARBOUR ARBUSCULAR MYCORRHIZAL AND OTHER FUNGI UNDER EXPERIMENTAL CONDITIONS. International Journal of Phytoremediation, 2009, 11, 347-359.	1.7	19

#	Article	IF	CITATIONS
55	Metallophyte status of violets of the section Melanium. Chemosphere, 2013, 93, 1844-1855.	4.2	18
56	The arbuscular mycorrhizal fungus Glomus mosseae alleviates autotoxic effects in maize (Zea mays L.). European Journal of Soil Biology, 2013, 58, 59-65.	1.4	18
57	Effects of non-chemical soil fumigant treatments on root colonisation with arbuscular mycorrhizal fungi and strawberry fruit production. Crop Protection, 2014, 55, 35-41.	1.0	18
58	In vitro propagation of European aspen (Populus tremula L.) from axillary buds via organogenesis. Scientia Horticulturae, 2009, 121, 109-112.	1.7	17
59	Cd induced redistribution of elements within leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2205-2210.	0.6	16
60	Genetic Structure and Relationships among Wild and Cultivated Grapevines from Central Europe and Part of the Western Balkan Peninsula. Genes, 2020, 11, 962.	1.0	16
61	1,8-dihydroxy naphthalene (DHN) - melanin confers tolerance to cadmium in isolates of melanised dark septate endophytes. Ecotoxicology and Environmental Safety, 2021, 222, 112493.	2.9	16
62	Use of micro-PIXE to determine spatial distributions of copper in Brassica carinata plants exposed to CuSO4 or CuEDDS. Science of the Total Environment, 2012, 427-428, 339-346.	3.9	15
63	Impact of double Zn and Se biofortification of wheat plants on the element concentrations in the grain. Plant, Soil and Environment, 2013, 59, 316-321.	1.0	15
64	Contrasting allocation of magnesium, calcium and manganese in leaves of tea (Camellia sinensis (L.)) Tj ETQqC Toxicology, 2020, 135, 110974.	0 0 rgBT /C 1.8	Overlock 10 Tf 15
65	Photon-harvesting efficiency and arbuscular mycorrhiza in amphibious plants. Photosynthetica, 2009, 47, 61-67.	0.9	14
66	On the distribution and evaluation of Na, Mg and Cl in leaves of selected halophytes. Nuclear Instruments & Methods in Physics Research B, 2013, 306, 144-149.	0.6	14
67	Changes in root growth patterns of (Picea abies) spruce roots by inoculation with an ectomycorrhizal fungusPisolithus tinctorius and jasmonic acid treatment. Trees - Structure and Function, 1996, 10, 410-414.	0.9	13
68	Early defence reactions in Norway spruce seedlings inoculated with the mycorrhizal fungus Pisolithus tinctorius (Persoon) Coker & Douch and the pathogen Heterobasidion annosum (Fr.) Bref Trees - Structure and Function, 2008, 22, 861-868.	0.9	13
69	Germination characteristics of Salicornia patula Duval-Jouve, S. emerici Duval-Jouve, and S. veneta Pign. et Lausi and their occurrence in Croatia. Acta Botanica Croatica, 2013, 72, 347-358.	0.3	13
70	Tissue-specific element profiles in Scots pine (Pinus sylvestris L.) needles. Trees - Structure and Function, 2019, 33, 91-101.	0.9	12
71	Jasmonic acid affects mycorrhization of spruce seedlings with. Trees - Structure and Function, 1997, 11, 511.	0.9	11
72	Micro-PIXE Analysis for Localization and Quantification of Elements in Roots of Mycorrhizal Metal-Tolerant Plants. Soil Biology, 2009, , 227-242.	0.6	9

#	Article	IF	CITATIONS
73	Mineral and Trace Element Composition and Importance for Nutritional Value of Buckwheat Grain, Groats, and Sprouts., 2016,, 261-271.		6
74	At the Crossroads of Metal Hyperaccumulation and Glucosinolates: Is There Anything Out There?. Soil Biology, 2010, , 139-161.	0.6	6
75	Original Leaf Colonisers Shape Fungal Decomposer Communities of Phragmites australis in Intermittent Habitats. Journal of Fungi (Basel, Switzerland), 2022, 8, 284.	1.5	6
76	Root-associated community composition and co-occurrence patterns of fungi in wild grapevine. Fungal Ecology, 2021, 50, 101034.	0.7	5
77	What Have We Learnt from Studying Mycorrhizal Colonisation of Wetland Plant Species?. , 2017, , 291-304.		4
78	Quantitative Analyses of Trace Elements in Environmental Samples: Options and (Im)possibilities. Soil Biology, 2010, , 113-138.	0.6	4
79			