Milivoj R Belic

List of Publications by Citations

Source: https://exaly.com/author-pdf/3651494/milivoj-r-belic-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 511
 11,096
 51
 76

 papers
 citations
 h-index
 g-index

 518
 13,314
 2.7
 7.03

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
511	Propagation Dynamics of a Light Beam in a Fractional Schrölinger Equation. <i>Physical Review Letters</i> , 2015 , 115, 180403	7.4	177
510	Optical solitons in nonlinear directional couplers by sinellosine function method and Bernoullill equation approach. <i>Nonlinear Dynamics</i> , 2015 , 81, 1933-1949	5	167
509	Roadmap on optical rogue waves and extreme events. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 063	3010 / 1	167
508	Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear Schrillinger equation. <i>Physical Review Letters</i> , 2008 , 101, 123904	7.4	143
507	Soliton pair generation in the interactions of Airy and nonlinear accelerating beams. <i>Optics Letters</i> , 2013 , 38, 4585-8	3	130
506	Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media. <i>Optics Express</i> , 2014 , 22, 7160-71	3.3	123
505	Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. <i>Optik</i> , 2016 , 127, 10659-10669	2.5	119
504	Conservation laws for cubicquartic optical solitons in Kerr and power law media. <i>Optik</i> , 2017 , 145, 650-6	5 5 45	112
503	Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations. <i>Optik</i> , 2017 , 145, 14-17	2.5	111
502	Optical solitons with complex Ginzburg[landau equation. Nonlinear Dynamics, 2016, 85, 1979-2016	5	110
501	Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential. <i>Optics Express</i> , 2015 , 23, 10467-80	3.3	109
500	Cubicquartic optical solitons in Kerr and power law media. <i>Optik</i> , 2017 , 144, 357-362	2.5	108
499	Optical solitons and conservation laws with quadratic-cubic nonlinearity. <i>Optik</i> , 2017 , 128, 63-70	2.5	106
498	Optical solitons for LakshmananPorsezianDaniel model by modified simple equation method. <i>Optik</i> , 2018 , 160, 24-32	2.5	105
497	Sub pico-second pulses in mono-mode optical fibers with KaupNewell equation by a couple of integration schemes. <i>Optik</i> , 2018 , 167, 121-128	2.5	103
496	Optical solitons and conservation law of Kundu E ckhaus equation. <i>Optik</i> , 2018 , 154, 551-557	2.5	101
495	PT symmetry in a fractional Schrdinger equation. <i>Laser and Photonics Reviews</i> , 2016 , 10, 526-531	8.3	97

(2018-2017)

494	Solitons in magneto-optic waveguides by extended trial function scheme. <i>Superlattices and Microstructures</i> , 2017 , 107, 197-218	2.8	94	
493	Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadraticulubic nonlinearity. <i>Optik</i> , 2018 , 164, 84-92	2.5	92	
492	Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. <i>Optik</i> , 2017 , 145, 18-21	2.5	92	
491	Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. <i>Optik</i> , 2016 , 127, 7250-7257	2.5	92	
490	Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dynamics, 2019, 95, 557-	563	91	
489	Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle. <i>Optik</i> , 2017 , 143, 131-134	2.5	90	
488	Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrdinger equation with distributed coefficients. <i>Physical Review A</i> , 2008 , 78,	2.6	90	
487	Generation and control of multiple solitons under the influence of parameters. <i>Nonlinear Dynamics</i> , 2019 , 95, 143-150	5	88	
486	Perturbation theory and optical soliton cooling with anti-cubic nonlinearity. <i>Optik</i> , 2017 , 142, 73-76	2.5	87	
485	Optical solitons with differential group delay for coupled Fokas Lenells equation using two integration schemes. <i>Optik</i> , 2018 , 165, 74-86	2.5	86	
484	Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients. <i>Journal of Modern Optics</i> , 2016 , 63, 950-954	1.1	86	
483	Singular solitons in optical metamaterials by ansatz method and simplest equation approach. Journal of Modern Optics, 2014 , 61, 1550-1555	1.1	86	
482	Optical soliton solutions to Fokas-lenells equation using some different methods. <i>Optik</i> , 2018 , 173, 21-3	3 1 .5	85	
481	Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion. <i>Optik</i> , 2019 , 181, 1028-1038	B2.5	82	
480	Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. <i>Optik</i> , 2017 , 139, 16-19	2.5	76	
479	Optical soliton perturbation for RadhakrishnanKundullakshmanan equation with a couple of integration schemes. <i>Optik</i> , 2018 , 163, 126-136	2.5	74	
47 ⁸	Diffraction-free beams in fractional Schrdinger equation. Scientific Reports, 2016, 6, 23645	4.9	69	
477	Optical soliton perturbation for complex Ginzburg landau equation with modified simple equation method. <i>Optik</i> , 2018 , 158, 399-415	2.5	68	

476	Bright and dark solitons in optical metamaterials. <i>Optik</i> , 2014 , 125, 3299-3302	2.5	68
475	Three-dimensional optical vortex and necklace solitons in highly nonlocal nonlinear media. <i>Physical Review A</i> , 2009 , 79,	2.6	65
474	Optical soliton perturbation for GerdjikovIvanov equation via two analytical techniques. <i>Chinese Journal of Physics</i> , 2018 , 56, 2879-2886	3.5	64
473	Optical soliton perturbation with full nonlinearity for Kundu E ckhaus equation by modified simple equation method. <i>Optik</i> , 2018 , 157, 1376-1380	2.5	63
472	Photonic Floquet topological insulators in atomic ensembles. <i>Laser and Photonics Reviews</i> , 2015 , 9, 331	-3338	58
471	Spatiotemporal accessible solitons in fractional dimensions. <i>Physical Review E</i> , 2016 , 94, 012216	2.4	58
470	Highly dispersive optical solitons with cubic-quintic-septic law by F-expansion. <i>Optik</i> , 2019 , 182, 897-906	5 2.5	57
469	Combined stimulated Raman scattering and continuum self-phase modulations. <i>Physical Review A</i> , 1980 , 21, 1222-1224	2.6	57
468	Nematicons in liquid crystals by extended trial equation method. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2017 , 26, 1750005	0.8	56
467	Rogue wave solutions to the generalized nonlinear Schrlinger equation with variable coefficients. <i>Physical Review E</i> , 2013 , 87, 065201	2.4	55
466	Engineered surface waves in hyperbolic metamaterials. <i>Optics Express</i> , 2013 , 21, 19113-27	3.3	55
465	Optical solitons in (2+1)Dimensions with KunduMukherjeeNaskar equation by extended trial function scheme. <i>Chinese Journal of Physics</i> , 2019 , 57, 72-77	3.5	55
464	Optical solitons in DWDM system by extended trial equation method. <i>Optik</i> , 2017 , 141, 157-167	2.5	54
463	Optical soliton perturbation with FokasIlenells equation using three exotic and efficient integration schemes. <i>Optik</i> , 2018 , 165, 288-294	2.5	54
462	Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers. <i>Scientific Reports</i> , 2017 , 7, 12186	4.9	54
461	Two-dimensional accessible solitons in PT-symmetric potentials. <i>Nonlinear Dynamics</i> , 2012 , 70, 2027-20	3 4	52
460	Optical solitons with Lakshmanan Porsezian Daniel model using a couple of integration schemes. <i>Optik</i> , 2018 , 158, 705-711	2.5	50
459	Soliton solutions to resonant nonlinear schrodinger's equation with time-dependent coefficients by modified simple equation method. <i>Optik</i> , 2016 , 127, 11450-11459	2.5	50

(2017-2015)

458	Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential. <i>Optics Letters</i> , 2015 , 40, 3786-9	3	49
457	Optical solitons having weak non-local nonlinearity by two integration schemes. <i>Optik</i> , 2018 , 164, 380-3	3 & 45	48
456	Dark and singular optical solitons with Kundu E ckhaus equation by extended trial equation method and extended G?/G-expansion scheme. <i>Optik</i> , 2016 , 127, 10490-10497	2.5	48
455	Soliton tunneling in the nonlinear Schrdinger equation with variable coefficients and an external harmonic potential. <i>Physical Review E</i> , 2010 , 81, 056604	2.4	48
454	Resonant optical solitons with parabolic and dual-power laws by semi-inverse variational principle. Journal of Modern Optics, 2018 , 65, 179-184	1.1	47
453	Solitons in Optical Metamaterials by Functional Variable Method and First Integral Approach. <i>Frequenz</i> , 2014 , 68,	0.6	47
452	Optical soliton perturbation with resonant nonlinear Schrdinger's equation having full nonlinearity by modified simple equation method. <i>Optik</i> , 2018 , 160, 33-43	2.5	46
451	Chirped femtosecond pulses in the higher-order nonlinear Schrdinger equation with non-Kerr nonlinear terms and cubicquinticdeptic nonlinearities. <i>Optics Communications</i> , 2016 , 366, 362-369	2	46
450	Nanoscale wear of graphene and wear protection by graphene. <i>Carbon</i> , 2017 , 120, 137-144	10.4	44
449	Three-dimensional localized Airy-Laguerre-Gaussian wave packets in free space. <i>Optics Express</i> , 2015 , 23, 23867-76	3.3	44
448	Optical soliton perturbation with Gerdjikov I vanov equation by modified simple equation method. <i>Optik</i> , 2018 , 157, 1235-1240	2.5	44
447	Controllable circular Airy beams via dynamic linear potential. <i>Optics Express</i> , 2016 , 24, 7495-506	3.3	44
446	Highly dispersive optical solitons with undetermined coefficients. <i>Optik</i> , 2019 , 182, 890-896	2.5	43
445	Propagation properties of dipole-managed solitons through an inhomogeneous cubicquinticEeptic medium. <i>Optics Communications</i> , 2018 , 425, 64-70	2	43
444	Nonlinear Talbot effect of rogue waves. <i>Physical Review E</i> , 2014 , 89, 032902	2.4	43
443	Accessible solitons of fractional dimension. <i>Annals of Physics</i> , 2016 , 368, 110-116	2.5	42
442	Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method. <i>Superlattices and Microstructures</i> , 2017 , 111, 487-498	2.8	42
441	Optical solitons for Lakshmanan Porsezian Daniel model with spatio-temporal dispersion using the method of undetermined coefficients. <i>Optik</i> , 2017 , 144, 115-123	2.5	42

440	Self-trapping of scalar and vector dipole solitary waves in Kerr media. <i>Physical Review A</i> , 2011 , 83,	2.6	42
439	Chaos in photorefractive four-wave mixing with a single grating and a single interaction region. Journal of the Optical Society of America B: Optical Physics, 1990, 7, 1204	1.7	42
438	Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. <i>Results in Physics</i> , 2020 , 16, 102913	3.7	42
437	Highly dispersive optical solitons with quadratic-cubic law by F-expansion. <i>Optik</i> , 2019 , 182, 930-943	2.5	42
436	Dispersive optical solitons with Schrdinger⊞irota equation by extended trial equation method. <i>Optik</i> , 2017 , 136, 451-461	2.5	41
435	Dark and singular optical solitons with spatio-temporal dispersion using modified simple equation method. <i>Optik</i> , 2017 , 130, 324-331	2.5	41
434	Robust three-dimensional spatial soliton clusters in strongly nonlocal media. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2008 , 41, 025402	1.3	41
433	Solitons and conservation laws in magneto-optic waveguides with triple-power law nonlinearity. <i>Journal of Optics (India)</i> , 2020 , 49, 584-590	1.3	41
432	Optical soliton perturbation with complex Ginzburglandau equation using trial solution approach. <i>Optik</i> , 2018 , 160, 44-60	2.5	40
431	Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution. <i>Optik</i> , 2018 , 165, 233-239	2.5	40
430	Solitons in optical metamaterials with fractional temporal evolution. <i>Optik</i> , 2016 , 127, 10879-10897	2.5	40
429	Bright, dark and W-shaped solitons with extended nonlinear Schrlinger's equation for odd and even higher-order terms. <i>Superlattices and Microstructures</i> , 2018 , 114, 53-61	2.8	39
428	Anderson localization of light in PT-symmetric optical lattices. <i>Optics Letters</i> , 2012 , 37, 4455-7	3	39
427	[INVITED] Soliton propagation through nanoscale waveguides in optical metamaterials. <i>Optics and Laser Technology</i> , 2016 , 77, 177-186	4.2	38
426	Resonant mode conversions and Rabi oscillations in a fractional Schrdinger equation. <i>Optics Express</i> , 2017 , 25, 32401	3.3	38
425	Automatic Fourier transform and self-Fourier beams due to parabolic potential. <i>Annals of Physics</i> , 2015 , 363, 305-315	2.5	37
424	Unveiling the Link Between Fractional Schrdinger Equation and Light Propagation in Honeycomb Lattice. <i>Annalen Der Physik</i> , 2017 , 529, 1700149	2.6	37
423	Solitons in Optical Metamaterials with Trial Solution Approach and Böklund Transform of Riccati Equation. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 5940-5948	0.3	37

422	Dark and singular dispersive optical solitons of SchrdingerHirota equation by modified simple equation method. <i>Optik</i> , 2017 , 136, 445-450	2.5	36	
421	Mean-Field Theory of Ferromagnetic Superconductors. <i>Physical Review Letters</i> , 1979 , 42, 1015-1019	7.4	36	
420	Optical soliton perturbation with full nonlinearity by trial equation method. <i>Optik</i> , 2018 , 157, 1366-13	1 75 2.5	35	
419	Counterpropagating nematicons in bias-free liquid crystals. <i>Optics Express</i> , 2010 , 18, 3258-63	3.3	35	
418	Anderson localization of light near boundaries of disordered photonic lattices. <i>Physical Review A</i> , 2011 , 83,	2.6	35	
417	Exact spatiotemporal wave and soliton solutions to the generalized (3+1)-dimensional Schrllinger equation for both normal and anomalous dispersion. <i>Optics Letters</i> , 2009 , 34, 1609-11	3	35	
416	Optical solitons with Kudryashov equation by extended trial function. <i>Optik</i> , 2020 , 202, 163290	2.5	35	
415	Optical solitons with DWDM technology and four-wave mixing. <i>Superlattices and Microstructures</i> , 2017 , 107, 254-266	2.8	34	
414	Solitons for perturbed Gerdjikov I vanov equation in optical fibers and PCF by extended KudryashovII method. <i>Optical and Quantum Electronics</i> , 2018 , 50, 1	2.4	34	
413	Optical soliton perturbation with Radhakrishnan K undullakshmanan equation by Lie group analysis. <i>Optik</i> , 2018 , 163, 137-141	2.5	34	
412	Optical soliton perturbation with full nonlinearity for Gerdjikov I Vanov equation by trial equation method. <i>Optik</i> , 2018 , 157, 1214-1218	2.5	34	
411	Three-dimensional finite-energy Airy self-accelerating parabolic-cylinder light bullets. <i>Physical Review A</i> , 2013 , 88,	2.6	34	
410	Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp(())-expansion. <i>Optik</i> , 2019 , 178, 439-448	2.5	34	
409	Analysis of optical solitons in nonlinear negative-indexed materials with anti-cubic nonlinearity. <i>Optical and Quantum Electronics</i> , 2018 , 50, 1	2.4	33	
408	Cubic-quartic bright optical solitons with improved Adomian decomposition method. <i>Journal of Advanced Research</i> , 2020 , 21, 161-167	13	33	
407	Optical solitons to Lakshmanan-Porsezian-Daniel model for three nonlinear forms. <i>Optik</i> , 2018 , 160, 1	97 <u>-</u> 2092	32	
406	Strain-enhanced superconductivity in Li-doped graphene. Europhysics Letters, 2014, 108, 67005	1.6	32	
405	Solitons in optical fiber Bragg gratings with dispersive reflectivity by extended trial function method. <i>Optik</i> , 2019 , 182, 88-94	2.5	32	

404	Dispersive optical solitons with SchrdingerHirota model by trial equation method. <i>Optik</i> , 2018 , 162, 35-41	2.5	31
403	Chirped optical solitons of Chenlleelliu equation by extended trial equation scheme. <i>Optik</i> , 2018 , 156, 999-1006	2.5	31
402	Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas Lenells equation. <i>Chaos, Solitons and Fractals</i> , 2018 , 114, 275-280	9.3	31
401	Bright soliton interactions in a (mathbf (2 +mathbf 1))-dimensional fourth-order variable-coefficient nonlinear Schrdinger equation for the Heisenberg ferromagnetic spin chain. <i>Nonlinear Dynamics</i> , 2019 , 95, 983-994	5	31
400	Solitons in optical metamaterials with anti-cubic nonlinearity. <i>European Physical Journal Plus</i> , 2018 , 133, 1	3.1	31
399	Control of dark and anti-dark solitons in the (2+1)-dimensional coupled nonlinear Schrdinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system. <i>Nonlinear Dynamics</i> , 2019 , 97, 471-483	5	30
398	Conservation laws for optical solitons in birefringent fibers and magneto-optic waveguides. <i>Optik</i> , 2016 , 127, 11662-11673	2.5	30
397	Topological and singular soliton solution to Kundu E ckhaus equation with extended Kudryashov's method. <i>Optik</i> , 2017 , 128, 57-62	2.5	30
396	Light bullets in the spatiotemporal nonlinear Schrdinger equation with a variable negative diffraction coefficient. <i>Physical Review A</i> , 2011 , 84,	2.6	30
395	Chirped optical solitons in nano optical fibers with dual-power law nonlinearity. <i>Optik</i> , 2017 , 142, 77-81	2.5	29
394	Highly dispersive optical solitons with cubicquintiquinticquintiq	2 5 .5	29
393	Optical solitons with LakshmananPorsezianDaniel model by modified extended direct algebraic method. <i>Optik</i> , 2018 , 162, 228-236	2.5	29
392	Singular optical solitons in birefringent nano-fibers. <i>Optik</i> , 2016 , 127, 8995-9000	2.5	29
391	Chirped singular solitons for Chen-Lee-Liu equation in optical fibers and PCF. <i>Optik</i> , 2018 , 157, 156-160	2.5	29
390	Conservation laws for optical solitons with Chen[lee[liu equation. <i>Optik</i> , 2018 , 174, 195-198	2.5	29
389	Highly dispersive optical solitons with non-local nonlinearity by exp-function. <i>Optik</i> , 2019 , 186, 288-292	2.5	28
388	Optical solitons and group invariant solutions to LakshmananPorsezianDaniel model in optical fibers and PCF. <i>Optik</i> , 2018 , 160, 86-91	2.5	28
387	Spatiotemporal soliton clusters in strongly nonlocal media with variable potential coefficients. <i>Nonlinear Dynamics</i> , 2017 , 87, 827-834	5	28

386	Bright optical solitons with Kerr law nonlinearity and fifth order dispersion. <i>Optik</i> , 2017 , 128, 172-177	2.5	28
385	Traveling and solitary wave solutions to the one-dimensional Gross-Pitaevskii equation. <i>Physical Review E</i> , 2010 , 81, 016605	2.4	28
384	Traveling wave and soliton solutions of coupled nonlinear Schrdinger equations with harmonic potential and variable coefficients. <i>Physical Review E</i> , 2010 , 82, 047601	2.4	28
383	Two-dimensional Whittaker solitons in nonlocal nonlinear media. <i>Physical Review A</i> , 2008 , 78,	2.6	28
382	Optical solitons and conservation laws with anti-cubic nonlinearity. <i>Optik</i> , 2016 , 127, 12056-12062	2.5	28
381	Optical solitons with complex Ginzburglandau equation for two nonlinear forms using F-expansion. <i>Chinese Journal of Physics</i> , 2019 , 61, 255-261	3.5	27
380	Special soliton structures in the (2+1)-dimensional nonlinear Schrdinger equation with radially variable diffraction and nonlinearity coefficients. <i>Physical Review E</i> , 2011 , 83, 036603	2.4	27
379	Chirped dark and gray solitons for Chenlleelliu equation in optical fibers and PCF. <i>Optik</i> , 2018 , 155, 329-333	2.5	27
378	Optical soliton perturbation with quadratic-cubic nonlinearity using a couple of strategic algorithms. <i>Chinese Journal of Physics</i> , 2018 , 56, 1990-1998	3.5	27
377	Accelerating AiryCaussKummer localized wave packets. <i>Annals of Physics</i> , 2014 , 340, 171-178	2.5	26
376	Propagation of chirped gray optical dips in nonlinear metamaterials. <i>Optics Communications</i> , 2019 , 430, 461-466	2	26
375	Chirped and chirp-free optical solitons with generalized anti-cubic nonlinearity by extended trial function scheme. <i>Optik</i> , 2019 , 178, 636-644	2.5	26
374	Optical soliton perturbation of Fokas Denells equation with two integration schemes. <i>Optik</i> , 2018 , 165, 111-116	2.5	25
373	Chirped w-shaped optical solitons of Chenlleelliu equation. <i>Optik</i> , 2018 , 155, 208-212	2.5	25
372	Rogue waves in a two-component Manakov system with variable coefficients and an external potential. <i>Physical Review E</i> , 2015 , 92, 053201	2.4	25
371	Dual accelerating Airy-Talbot recurrence effect. <i>Optics Letters</i> , 2015 , 40, 5742-5	3	25
370	Solitary waves in the nonlinear Schrdinger equation with spatially modulated Bessel nonlinearity. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 1276	1.7	25
369	Transverse localization of light in nonlinear photonic lattices with dimensionality crossover. <i>Physical Review A</i> , 2011 , 84,	2.6	25

368	Solitons in optical fiber Bragg gratings with dispersive reflectivity. <i>Optik</i> , 2019 , 182, 119-123	2.5	25
367	Dispersive optical solitons in DWDM systems. <i>Optik</i> , 2017 , 132, 210-215	2.5	24
366	Optical solitons in nonlinear directional couplers with G?/G-expansion scheme. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2015 , 24, 1550017	0.8	24
365	Spatiotemporal solitons in cold Rydberg atomic gases with Bessel optical lattices. <i>Applied Mathematics Letters</i> , 2020 , 106, 106230	3.5	24
364	Optical soliton perturbation for Gerdjikov I vanov equation by extended trial equation method. <i>Optik</i> , 2018 , 158, 747-752	2.5	24
363	Optical solitons in birefringent fibers for Lakshmanan P orsezian D aniel model using exp(P(I))-expansion method. <i>Optik</i> , 2018 , 170, 555-560	2.5	24
362	Dipole solitons in optical metamaterials with Kerr law nonlinearity. <i>Optik</i> , 2017 , 128, 71-76	2.5	24
361	Optical Bloch oscillation and Zener tunneling in an atomic system. <i>Optica</i> , 2017 , 4, 571	8.6	24
360	Anatomy of the Akhmediev breather: Cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence. <i>Physical Review E</i> , 2015 , 92, 063202	2.4	24
359	Solitons in highly nonlocal nematic liquid crystals: Variational approach. <i>Physical Review A</i> , 2012 , 85,	2.6	24
358	Self-similar optical solitons with continuous-wave background in a quadraticubic non-centrosymmetric waveguide. <i>Optics Communications</i> , 2019 , 437, 392-398	2	24
357	Optical solitons and conservation laws of Kudryashov's equation with improved modified extended tanh-function. <i>Optik</i> , 2021 , 225, 165406	2.5	24
356	Optical solitons with differential group delay by trial equation method. <i>Optik</i> , 2018 , 160, 116-123	2.5	23
355	Optical Bloch oscillation and Zener tunneling in the fractional Schrdinger equation. <i>Scientific Reports</i> , 2017 , 7, 17872	4.9	23
354	Optical dromions, domain walls and conservation laws with KunduMukherjeeNaskar equation via traveling waves and Lie symmetry. <i>Results in Physics</i> , 2020 , 16, 102850	3.7	23
353	Solitons in magnetoBptic waveguides with KudryashovBlaw of refractive index. <i>Chaos, Solitons and Fractals</i> , 2020 , 140, 110129	9.3	23
352	Optical solitons in nonlinear negative-index materials with quadratic-cubic nonlinearity. Superlattices and Microstructures, 2017 , 109, 176-182	2.8	22
351	Cubic-quartic optical soliton perturbation by semi-inverse variational principle. <i>Optik</i> , 2019 , 185, 45-49	2.5	22

350	Optical solitons with polarization mode dispersion for Lakshmanan Porsezian Daniel model by the method of undetermined coefficients. <i>Optik</i> , 2018 , 171, 114-119	2.5	22	
349	Controllable parabolic-cylinder optical rogue wave. <i>Physical Review E</i> , 2014 , 90, 043201	2.4	22	
348	Parity-time symmetry light bullets in a cold Rydberg atomic gas. <i>Optics Express</i> , 2020 , 28, 16322-16332	3.3	22	
347	Optical solitons in birefringent fibers with Kundu-Eckhaus equation. <i>Optik</i> , 2019 , 178, 550-556	2.5	22	
346	Chirped envelope optical solitons for KaupNewell equation. <i>Optik</i> , 2019 , 177, 1-7	2.5	22	
345	Transport properties in the photonic super-honeycomb lattice la hybrid fermionic and bosonic system. <i>Annalen Der Physik</i> , 2017 , 529, 1600258	2.6	21	
344	Bright and singular optical solitons for KaupNewell equation with two fundamental integration norms. <i>Optik</i> , 2019 , 182, 594-597	2.5	21	
343	Optical solitons with Kudryashovā equation by F-expansion. <i>Optik</i> , 2019 , 199, 163338	2.5	21	
342	Kummer solitons in strongly nonlocal nonlinear media. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 373, 296-298	2.3	21	
341	Nematicons in liquid crystals by modified simple equation method. <i>Nonlinear Dynamics</i> , 2017 , 88, 2863-	2 <mark>\$</mark> 72	20	
340	Highly dispersive optical solitons with quadratic dubic law by exp-function. Optik, 2019, 186, 431-435	2.5	20	
339	Optical solitons in fiber Bragg gratings with dispersive reflectivity for quadraticubic nonlinearity by extended trial function method. <i>Optik</i> , 2019 , 185, 50-56	2.5	20	
338	W-shaped and bright optical solitons in negative indexed materials. <i>Chaos, Solitons and Fractals</i> , 2019 , 123, 101-107	9.3	20	
337	Optical soliton perturbation in magneto-optic waveguides. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2018 , 27, 1850005	0.8	20	
336	Optical soliton perturbation with full nonlinearity for Kundu E ckhaus equation by extended trial function scheme. <i>Optik</i> , 2018 , 160, 17-23	2.5	20	
335	Exact solutions of the (2+1)-dimensional quintic nonlinear Schrlinger equation with variable coefficients. <i>Nonlinear Dynamics</i> , 2015 , 80, 583-589	5	20	
334	Three-dimensional Hermite-Bessel solitons in strongly nonlocal media with variable potential coefficients. <i>Optics Communications</i> , 2014 , 313, 62-69	2	20	
333	Optical vortices induced in nonlinear multilevel atomic vapors. <i>Optics Letters</i> , 2012 , 37, 4507-9	3	20	

332	Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrdinger equation with polynomial nonlinearity of arbitrary order. <i>Physical Review E</i> , 2011 , 83, 026604	1 ^{2.4}	20
331	Anderson localization of light at the interface between linear and nonlinear dielectric media with an optically induced photonic lattice. <i>Physical Review A</i> , 2012 , 85,	2.6	20
330	Optical solitons in birefringent fibers with quadraticulubic nonlinearity by extended G?/G-expansion scheme. <i>Optik</i> , 2019 , 178, 59-65	2.5	20
329	Electrically Tunable MetalBemiconductorMetal Terahertz Metasurface Modulators. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2019 , 25, 1-8	3.8	19
328	Optical solitons in birefringent fibers with Lakshmanan Porsezian Daniel model by modified simple equation. <i>Optik</i> , 2019 , 192, 162899	2.5	19
327	Optical soliton perturbation with Chenlleelliu equation. <i>Optik</i> , 2020 , 220, 165177	2.5	19
326	Guided Self-Accelerating Airy Beams Mini-Review. Applied Sciences (Switzerland), 2017, 7, 341	2.6	19
325	Formic Acid Synthesis by CO2 Hydrogenation over Single-Atom Catalysts Based on Ru and Cu Embedded in Graphene. <i>ChemistrySelect</i> , 2018 , 3, 2631-2637	1.8	19
324	Optical solitons with complex Ginzburg[landau equation having three nonlinear forms. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2019 , 383, 126026	2.3	19
323	Spatiotemporal wave and soliton solutions to the generalized (3+1)-dimensional Gross-Pitaevskii equation. <i>Physical Review E</i> , 2010 , 81, 016610	2.4	19
322	Optical solitons for Lakshmanan P orsezian D aniel model by Riccati equation approach. <i>Optik</i> , 2019 , 182, 922-929	2.5	18
321	Optical solitons with differential group delay and four-wave mixing using two integration procedures. <i>Optik</i> , 2018 , 167, 170-188	2.5	18
320	Optical solitons for Gerdjikov I vanov model by extended trial equation scheme. <i>Optik</i> , 2018 , 157, 1241-1	248	18
319	Solitons in nonlinear directional couplers with optical metamaterials. <i>Nonlinear Dynamics</i> , 2017 , 87, 427	- 4 58	18
318	Bright and exotic solitons in optical metamaterials by semi-inverse variational principle. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2015 , 24, 1550042	0.8	18
317	Three-dimensional spatiotemporal solitary waves in strongly nonlocal media. <i>Optics Communications</i> , 2010 , 283, 5213-5217	2	18
316	Optical Solitons in Nano-Fibers with Fractional Temporal Evolution. <i>Journal of Computational and Theoretical Nanoscience</i> , 2016 , 13, 5361-5374	0.3	18
315	Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrdinger equation and their systematic generation. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2016 , 380, 3625-3629	2.3	18

(2019-2019)

Optical solitons for higher-order nonlinear Schrllingerll equation with three exotic integration architectures. <i>Optik</i> , 2019 , 179, 861-866	2.5	18	
Second-order rogue wave breathers in the nonlinear Schrdinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient. <i>Optics Express</i> , 2015 , 23, 3708-16	3.3	17	
Optical solitons in birefringent fibers for Radhakrishnan Kundu Lakshmanan equation with five prolific integration norms. <i>Optik</i> , 2020 , 208, 164550	2.5	17	
Optical solitons with generalized anti-cubic nonlinearity by Lie symmetry. <i>Optik</i> , 2020 , 206, 163638	2.5	17	
Enhanced sheet conductivity of Langmuir B lodgett assembled graphene thin films by chemical doping. <i>2D Materials</i> , 2016 , 3, 015002	5.9	17	
Sub pico-second chirp-free optical solitons with Kaup-Newell equation using a couple of strategic algorithms. <i>Optik</i> , 2018 , 172, 766-771	2.5	17	
Three-dimensional spatiotemporal vector solitary waves in coupled nonlinear Schrdinger equations with variable coefficients. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 113	1.7	17	
Three-dimensional Bessel light bullets in self-focusing Kerr media. <i>Physical Review A</i> , 2010 , 82,	2.6	17	
Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. <i>Optics Letters</i> , 2017 , 42, 446-449	3	17	
Optical solitons with Chen[lee[liu equation by Lie symmetry. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126202	2.3	17	
Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear Schrdinger equation with spatially modulated nonlinearities and potentials. <i>Optics Express</i> , 2016 , 24, 10066-77	3.3	17	
Solitons and conservation laws in magnetoBptic waveguides with generalized KudryashovB equation. <i>Chinese Journal of Physics</i> , 2021 , 69, 186-205	3.5	17	
Three-dimensional solitons in Bose-Einstein condensates with spin-orbit coupling and Bessel optical lattices. <i>Physical Review A</i> , 2018 , 98,	2.6	17	
Dispersive optical solitons with differential group delay by a couple of integration schemes. <i>Optik</i> , 2018 , 162, 108-120	2.5	16	
Dipole solitons in an extended nonlinear Schrldinger's equation with higher-order even and odd terms. <i>Optik</i> , 2017 , 145, 644-649	2.5	16	
Bright optical solitons of Chen-Lee-Liu equation with improved Adomian decomposition method. <i>Optik</i> , 2019 , 181, 964-970	2.5	16	
Optical solitons pertutabation with Fokas-Lenells equation by exp(P(I))-expansion method. <i>Optik</i> , 2019 , 179, 341-345	2.5	16	
Stochastic perturbation of optical solitons having anti-cubic nonlinearity with bandpass filters and multi-photon absorption. <i>Optik</i> , 2019 , 178, 1120-1124	2.5	16	
	architectures. Optik, 2019, 179, 861-866 Second-order rogue wave breathers in the nonlinear Schriftinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient. Optics Express, 2015, 23, 3708-16 Optical solitons in birefringent fibers for RadhakrishnanBundullakshmanan equation with five prolific integration norms. Optik, 2020, 208, 164550 Optical solitons with generalized anti-cubic nonlinearity by Lie symmetry. Optik, 2020, 206, 163638 Enhanced sheet conductivity of LangmuirBlodgett assembled graphene thin films by chemical doping. 2D Materials, 2016, 3, 015002 Sub pico-second chirp-free optical solitons with Kaup-Newell equation using a couple of strategic algorithms. Optik, 2018, 172, 766-771 Three-dimensional spatiotemporal vector solitary waves in coupled nonlinear Schriftinger equations with variable coefficients. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 113 Three-dimensional Bessel light bullets in self-focusing Kerr media. Physical Review A, 2010, 82, Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. Optics Letters, 2017, 42, 446-449 Optical solitons with ChenIleelliu equation by Lie symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126202 Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear Schriftinger equation with spatially modulated nonlinearities and potentials. Optics Express, 2016, 24, 10066-77 Solitons and conservation laws in magneto@ptic waveguides with spin-orbit coupling and Bessel optical lattices. Physical Review A, 2018, 98, Dispersive optical solitons in Bose-Einstein condensates with spin-orbit coupling and Bessel optical lattices. Physical Review A, 2018, 98, Dispersive optical solitons with differential group delay by a couple of integration schemes. Optik, 2019, 181, 964-970 Optical solitons perturbabation with Fokas-Lenells equation by exp(XII)-expansion method. Optik, 2019, 181, 964-970 Optical solitons perturbabati	architectures. Optik, 2019, 179, 861-866 Second-order rogue wave breathers in the nonlinear SchriBinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient. Optics Express, 2015, 23, 3708-16 Optical solitons in birefringent fibers for RadhakrishnanBundullakshmanan equation with five prolific integration norms. Optik, 2020, 208, 164550 Optical solitons with generalized anti-cubic nonlinearity by Lie symmetry. Optik, 2020, 206, 163638 Enhanced sheet conductivity of LangmuirBlodgett assembled graphene thin films by chemical doping. 2D Materials, 2016, 3, 015002 Sub pico-second chirp-free optical solitons with Kaup-Newell equation using a couple of strategic algorithms. Optik, 2018, 172, 766-771 Three-dimensional spatiotemporal vector solitary waves in coupled nonlinear SchriBinger equations with variable coefficients. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 113 Three-dimensional Bessel light bullets in self-focusing Kerr media. Physical Review A, 2010, 82, 2.6 Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. Optics Letters, 2017, 42, 446-449 Optical solitons with ChenIleelliu equation by Lie symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126202 Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear SchriBinger equation with spatially modulated nonlinearities and potentials. Optics Express, 2016, 24, 10066-77 Solitons and conservation laws in magnetoBptic waveguides with generalized Kudryashov8 equation. Chinese Journal of Physics, 2021, 69, 186-205 Three-dimensional solitons in Bose-Einstein condensates with spin-orbit coupling and Bessel optical lattices. Physical Review A, 2018, 98, Dispersive optical solitons with differential group delay by a couple of integration schemes. Optik, 2018, 162, 108-120 Dipole solitons in an extended nonlinear SchriBinger's equation with higher-order even and odd terms. Optik, 2019, 181, 964-970 Optical soliton	Second-order rogue wave breathers in the nonlinear Schridinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient. Optics Express 2015, 23, 3708-16 Optical solitons in birefringent fibers for RadhakrishnanRundullakshmanan equation with five prolific integration norms. Optik, 2020, 208, 164550 Optical solitons with generalized anti-cubic nonlinearity by Lie symmetry. Optik, 2020, 206, 163638 2.5 17 Enhanced sheet conductivity of LangmuirBlodgett assembled graphene thin films by chemical doping. 2D Materials, 2016, 3, 015002 Sub pico-second chirp-free optical solitons with Kaup-Newell equation using a couple of strategic algorithms. Optik, 2018, 172, 766-771 Three-dimensional spatiotemporal evector solitary waves in coupled nonlinear Schridinger equations with variable coefficients. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 113 Three-dimensional Bessel light bullets in self-focusing Kerr media. Physical Review A 2010, 82, 26 17 Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. Optics Letters, 2017, 42, 446-449 Optical solitons with ChenLeediu equation by Lie symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126202 Dynamics of nonlinear waves in two-dimensional cubic-quintic nonlinear Schridinger equation with spatially modulated nonlinearities and potentials. Optics Express, 2016, 24, 10066-77 Solitons and conservation laws in magnetoBptic waveguides with generalized Kudnyashov8 26 17 Dipole solitons in an extended nonlinear Schridinger's equation with higher-order even and odd terms. Optik, 2017, 145, 644-649 Dispersive optical solitons with differential group delay by a couple of integration schemes. Optik, 2018, 162, 108-120 Optical solitons in an extended nonlinear Schridinger's equation with higher-order even and odd terms. Optik, 2017, 145, 644-649 Bright optical solitons pertutabation with Fokas-Lenells equation by exp(8(1)-expansion method. Optik, 2019, 18

296	Highly dispersive optical solitons with Kerr law nonlinearity by exp-function. <i>Optik</i> , 2019 , 185, 121-125	2.5	15
295	Optical solitons and other solutions with anti-cubic nonlinearity by Lie symmetry analysis and additional integration architectures. <i>Optik</i> , 2019 , 185, 30-38	2.5	15
294	Two-dimensional linear and nonlinear Talbot effect from rogue waves. <i>Physical Review E</i> , 2015 , 91, 032	9164	15
293	Solitons in magnetobptic waveguides with quadraticubic nonlinearity. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126456	2.3	15
292	Optical solitons in fiber Bragg gratings with generalized anti-cubic nonlinearity by extended auxiliary equation. <i>Chinese Journal of Physics</i> , 2020 , 65, 613-628	3.5	15
291	Optical solitons in birefringent fibers by extended trial equation method. <i>Optik</i> , 2016 , 127, 11311-1132	52.5	15
2 90	Fractional nonparaxial accelerating Talbot effect. Optics Letters, 2016, 41, 3273-6	3	15
289	Light bullet supported by parity-time symmetric potential with power-law nonlinearity. <i>Nonlinear Dynamics</i> , 2016 , 84, 1877-1882	5	15
288	Optical solitons with polarization-mode dispersion for coupled Fokas Lenells equation with two forms of integration architecture. <i>Optical and Quantum Electronics</i> , 2018 , 50, 1	2.4	15
287	Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity. <i>Annals of Physics</i> , 2014 , 351, 787-796	2.5	15
286	Nondiffracting Bessel plasmons. <i>Optics Express</i> , 2011 , 19, 19572-81	3.3	15
285	Self-Similar Hermitelaussian Spatial Solitons in Two-Dimensional Nonlocal Nonlinear Media. <i>Communications in Theoretical Physics</i> , 2010 , 53, 937-942	2.4	15
284	Optical solitons with complex Ginzburg-Landau equation having a plethora of nonlinear forms with a couple of improved integration norms. <i>Optik</i> , 2020 , 207, 163804	2.5	15
283	Cubicquartic optical solitons in birefringent fibers with four forms of nonlinear refractive index. <i>Optik</i> , 2020 , 203, 163885	2.5	15
282	Solitons in nonlinear directional couplers with optical metamaterials by exp(III)-expansion. <i>Optik</i> , 2019 , 179, 443-462	2.5	15
281	Sub pico-second optical pulses in birefringent fibers for KaupNewell equation with cutting-edge integration technologies. <i>Results in Physics</i> , 2019 , 15, 102660	3.7	14
280	Dispersive solitons in optical fibers and DWDM networks with Schrdinger⊞irota equation. <i>Optik</i> , 2019 , 199, 163214	2.5	14
279	Special two-soliton solution of the generalized Sinelicordon equation with a variable coefficient. <i>Applied Mathematics Letters</i> , 2014 , 38, 122-128	3.5	14

(2019-2013)

278	Periodic soliton solutions of the nonlinear Schrdinger equation with variable nonlinearity and external parabolic potential. <i>Optik</i> , 2013 , 124, 2397-2400	2.5	14	
277	Parallel propagation of dispersive optical solitons by extended trial equation method. <i>Optik</i> , 2017 , 144, 565-572	2.5	14	
276	Light bullets in coupled nonlinear Schrdinger equations with variable coefficients and a trapping potential. <i>Optics Express</i> , 2017 , 25, 9094-9104	3.3	14	
275	The sensitivity of water extractable soil organic carbon fractions to land use in three soil types. <i>Archives of Agronomy and Soil Science</i> , 2016 , 62, 1654-1664	2	14	
274	Optical solitons in birefringent fibers with weak non-local nonlinearity using two forms of integration architecture. <i>Optik</i> , 2019 , 178, 669-680	2.5	14	
273	Optical solitons in birefringent fibers with quadraticdubic nonlinearity by extended trial function scheme. <i>Optik</i> , 2019 , 176, 542-548	2.5	14	
272	Chirped singular and combo optical solitons for Chenlleelliu equation with three forms of integration architecture. <i>Optik</i> , 2019 , 178, 172-177	2.5	14	
271	Cubicquartic optical soliton perturbation with LakshmananPorsezianDaniel model by sine-Gordon equation approach. <i>Journal of Optics (India)</i> , 2021 , 50, 322-329	1.3	14	
270	Self-decelerating Airy-Bessel light bullets. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2015 , 48, 175401	1.3	13	
269	Optical solitons in parabolic law medium with weak non-local nonlinearity using modified extended direct algebraic method. <i>Optik</i> , 2018 , 161, 180-186	2.5	13	
268	Optical solitons with modified extended direct algebraic method for quadratic-cubic nonlinearity. <i>Optik</i> , 2018 , 162, 161-171	2.5	13	
267	Optical soliton perturbation with Kundu E ckhaus equation by exp(I (I))-expansion scheme and G?/G2-expansion method. <i>Optik</i> , 2018 , 172, 79-85	2.5	13	
266	Analytical traveling-wave and solitary solutions to the generalized Gross-Pitaevskii equation with sinusoidal time-varying diffraction and potential. <i>Physical Review E</i> , 2011 , 83, 036609	2.4	13	
265	Running transverse waves in optical phase conjugation. <i>Physical Review A</i> , 1996 , 53, 4519-4527	2.6	13	
264	Multigrating optical phase conjugation: numerical results. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1989 , 6, 901	1.7	13	
263	Stationary optical solitons with SasaBatsuma equation having nonlinear chromatic dispersion. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126721	2.3	13	
262	Raman solitons in nanoscale optical waveguides, with metamaterials, having polynomial law non-linearity. <i>Journal of Modern Optics</i> , 2016 , 63, S32-S37	1.1	13	
261	Breathers, solitons and rogue waves of the quintic nonlinear Schrdinger equation on various backgrounds. <i>Nonlinear Dynamics</i> , 2019 , 95, 2855-2865	5	13	

260	Optical solitons in birefringent fibers having anti-cubic nonlinearity with exp-function. <i>Optik</i> , 2019 , 186, 363-368	2.5	12
259	Optical solitons in birefringent fibers having anti-cubic nonlinearity with extended trial function. <i>Optik</i> , 2019 , 185, 456-463	2.5	12
258	Transient optical response of cold Rydberg atoms with electromagnetically induced transparency. <i>Physical Review A</i> , 2020 , 101,	2.6	12
257	Optical network topology with DWDM technology for log law medium. <i>Optik</i> , 2018 , 160, 353-360	2.5	12
256	Optical soliton perturbation with fractional temporal evolution by extended G?/G-expansion method. <i>Optik</i> , 2018 , 161, 301-320	2.5	12
255	Optical soliton perturbation with fractional temporal evolution by generalized Kudryashov's method. <i>Optik</i> , 2018 , 164, 303-310	2.5	12
254	Optical solitons with higher order dispersions in parabolic law medium by trial solution approach. <i>Optik</i> , 2016 , 127, 11306-11310	2.5	12
253	Breather solutions of the generalized nonlinear Schrdinger equation with spatially modulated parameters and a special external potential. <i>European Physical Journal Plus</i> , 2014 , 129, 1	3.1	12
252	Multicharged optical vortices induced in a dissipative atomic vapor system. <i>Physical Review A</i> , 2013 , 88,	2.6	12
251	Hybrid visible-light responsive Al2O3 particles. <i>Chemical Physics Letters</i> , 2017 , 685, 416-421	2.5	12
250	Density functional theory study of phonons in graphene doped with Li, Ca and Ba. <i>Europhysics Letters</i> , 2015 , 112, 67006	1.6	12
249	Solitary waves in the nonlinear Schrdinger equation with Hermite-Gaussian modulation of the local nonlinearity. <i>Physical Review E</i> , 2011 , 84, 046611	2.4	12
248	Substantial enlargement of angular existence range for Dyakonov-like surface waves at semi-infinite metal-dielectric superlattice. <i>Journal of Nanophotonics</i> , 2012 , 6, 063525	1.1	12
247	Angular momentum transfer in optically induced photonic lattices. <i>Physical Review A</i> , 2007 , 76,	2.6	12
246	Unified method for solution of wave equations in photorefractive media. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1994 , 11, 481	1.7	12
245	Graphene/MoS2 heterostructures as templates for growing two-dimensional metals: Predictions from ab initio calculations. <i>Physical Review Materials</i> , 2017 , 1,	3.2	12
244	Pure-cubic optical soliton perturbation with full nonlinearity by unified Riccati equation expansion. <i>Optik</i> , 2020 , 223, 165445	2.5	12
243	Pure-cubic optical soliton perturbation with full nonlinearity. <i>Optik</i> , 2020 , 222, 165394	2.5	12

(2015-2019)

242	Bright optical solitons for Lakshmanan P orsezian D aniel model with spatio-temporal dispersion by improved Adomian decomposition method. <i>Optik</i> , 2019 , 181, 891-897	2.5	12	
241	Optical soliton perturbation with quadratic-cubic nonlinearity by mapping methods. <i>Chinese Journal of Physics</i> , 2019 , 60, 632-637	3.5	11	
240	Optical solitons having anti-cubic nonlinearity with strategically sound integration architectures. <i>Optik</i> , 2019 , 185, 57-70	2.5	11	
239	Breather management in the derivative nonlinear Schrdinger equation with variable coefficients. <i>Annals of Physics</i> , 2015 , 355, 313-321	2.5	11	
238	Dispersive optical solitons with differential group delay by extended trial equation method. <i>Optik</i> , 2018 , 158, 790-798	2.5	11	
237	Resonant optical soliton perturbation with anti-cubic nonlinearity by extended trial function method. <i>Optik</i> , 2018 , 156, 784-790	2.5	11	
236	Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study. <i>Microporous and Mesoporous Materials</i> , 2019 , 273, 41-49	5.3	11	
235	Super-Gaussian Solitons in Optical Metamaterials Using Collective Variables. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 5119-5124	0.3	11	
234	Publisher's Note: Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrdinger equation with distributed coefficients [Phys. Rev. A 78, 023821 (2008)]. <i>Physical Review A</i> , 2008 , 78,	2.6	11	
233	Optical Solitons in Cascaded System by Extended Trial Function Method. <i>Journal of Computational and Theoretical Nanoscience</i> , 2016 , 13, 5394-5398	0.3	11	
232	Cubicquartic optical soliton perturbation with Lakshmanan Porsezian Daniel model. <i>Optik</i> , 2021 , 233, 166385	2.5	11	
231	Cubicquartic optical soliton perturbation in polarization-preserving fibers with Fokas[lenells equation. <i>Optik</i> , 2021 , 234, 166543	2.5	11	
230	Chirped bright and double-kinked quasi-solitons in optical metamaterials with self-steepening nonlinearity. <i>Journal of Modern Optics</i> , 2019 , 66, 192-199	1.1	11	
229	Optical soliton molecules in birefringent fibers having weak non-local nonlinearity and four-wave mixing with a couple of strategic integration architectures. <i>Optik</i> , 2019 , 179, 927-940	2.5	11	
228	Optical solitons in birefringent fibers having anti-cubic nonlinearity with a few prolific integration algorithms. <i>Optik</i> , 2020 , 200, 163229	2.5	11	
227	Peak-height formula for higher-order breathers of the nonlinear Schrdinger equation on nonuniform backgrounds. <i>Physical Review E</i> , 2017 , 95, 012211	2.4	10	
226	Optical soliton perturbation of Fokas-Lenells equation by the Laplace-Adomian decomposition algorithm. <i>Journal of the European Optical Society-Rapid Publications</i> , 2019 , 15,	2.5	10	
225	Influence of a gold substrate on the optical properties of graphene. <i>Journal of Applied Physics</i> , 2015 , 117, 015305	2.5	10	

224	Hamiltonian perturbation of optical solitons with parabolic law nonlinearity using three integration methodologies. <i>Optik</i> , 2018 , 160, 248-254	2.5	10
223	Gray and black optical solitons with quintic nonlinearity. <i>Optik</i> , 2018 , 154, 354-359	2.5	10
222	Exact solutions for the quintic nonlinear Schrdinger equation with time and space. <i>Nonlinear Dynamics</i> , 2016 , 84, 251-259	5	10
221	Edge States in Dynamical Superlattices. ACS Photonics, 2017, 4, 2250-2256	6.3	10
220	Interactions of Aromatic Residues in Amyloids: A Survey of Protein Data Bank Crystallographic Data. <i>Crystal Growth and Design</i> , 2017 , 17, 6353-6362	3.5	10
219	Breather solutions to the nonlinear Schrdinger equation with variable coefficients and a linear potential. <i>Physica Scripta</i> , 2012 , 86, 015402	2.6	10
218	Optical solitons with differential group delay for complex Ginzburglandau equation. <i>Results in Physics</i> , 2020 , 16, 102888	3.7	10
217	Chirped and chirp-free optical solitons having generalized anti-cubic nonlinearity with a few cutting-edge integration technologies. <i>Optik</i> , 2020 , 206, 163745	2.5	10
216	A pen-picture of solitons and conservation laws in magneto-optic waveguides having quadratic-cubic law of nonlinear refractive index. <i>Optik</i> , 2020 , 223, 165330	2.5	10
215	Dispersive solitons in optical metamaterials having parabolic form of nonlinearity. <i>Optik</i> , 2019 , 179, 10)0 2. ţ01	810
214	Stationary optical solitons with nonlinear group velocity dispersion by extended trial function scheme. <i>Optik</i> , 2018 , 171, 529-542	2.5	10
213	2D optical rogue waves in self-focusing Kerr-type media with spatially modulated coefficients. <i>Laser Physics</i> , 2015 , 25, 085402	1.2	9
212	Stationary optical solitons with nonlinear chromatic dispersion having quadratic dubic law of refractive index. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126606	2.3	9
211	Optical solitons in birefringent fibers with Radhakrishnan Kundu Lakshmanan equation by a couple of strategically sound integration architectures. <i>Chinese Journal of Physics</i> , 2020 , 65, 341-354	3.5	9
210	Optical soliton perturbation with exotic non-Kerr law nonlinearities. <i>Optik</i> , 2018 , 158, 1370-1379	2.5	9
209	Optical solitons in parabolic law medium with weak non-local nonlinearity by extended trial function method. <i>Optik</i> , 2018 , 163, 56-61	2.5	9
208	Controllable optical rogue waves via nonlinearity management. <i>Optics Express</i> , 2018 , 26, 7587-7597	3.3	9
207	Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids. <i>Chemistry - A European Journal</i> , 2017 , 23, 11046-11053	4.8	9

206	Solitary and extended waves in the generalized sinh-Gordon equation with a variable coefficient. <i>Nonlinear Dynamics</i> , 2014 , 76, 717-723	5	9
205	Three-dimensional spatiotemporal vector solitary waves. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2011 , 44, 095403	1.3	9
204	Quasi-stable propagation of vortices and soliton clusters in saturable Kerr media with square-root nonlinearity. <i>Optics Communications</i> , 2007 , 279, 196-202	2	9
203	Nematicons in Liquid Crystals. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 4667-46	5 73 .3	9
202	Nonlinear Pulse Propagation in Optical Metamaterials. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 4837-4841	0.3	9
2 01	Dispersive Optical Solitons with Schr?dinger-Hirota Equation Using Undetermined Coefficients. Journal of Computational and Theoretical Nanoscience, 2016 , 13, 5288-5293	0.3	9
200	Nonparaxial self-accelerating beams in an atomic vapor with electromagnetically induced transparency. <i>Optics Letters</i> , 2016 , 41, 5644-5647	3	9
199	Optical solitons with differential group delay for complex Ginzburg[landau equation having Kerr and parabolic laws of refractive index. <i>Optik</i> , 2020 , 202, 163737	2.5	9
198	Optical soliton polarization with Lakshmanan P orsezian D aniel model by unified approach. <i>Results in Physics</i> , 2021 , 22, 103958	3.7	9
197	Propagation of chirped periodic and localized waves with higher-order effects through optical fibers. <i>Chaos, Solitons and Fractals</i> , 2021 , 146, 110873	9.3	9
196	Optical solitons in birefringent fibers with quadraticubic refractive index by ?6thodel expansion. <i>Optik</i> , 2020 , 202, 163620	2.5	9
195	Perturbed resonant 1-soliton solution with anti-cubic nonlinearity by Riccati-Bernoulli sub-ODE method. <i>Optik</i> , 2018 , 156, 346-350	2.5	9
194	Vortex solitons in Bose E instein condensates with spin B rbit coupling and Gaussian optical lattices. <i>Applied Mathematics Letters</i> , 2019 , 92, 15-21	3.5	8
193	Optical solitons having anti-cubic nonlinearity with two integration architectures. <i>Chinese Journal of Physics</i> , 2019 , 60, 659-664	3.5	8
192	Self-frequency shift effect for chirped self-similar solitons in a tapered graded-indexed waveguide. <i>Optics Communications</i> , 2020 , 468, 125800	2	8
191	Novel singular solitons in optical metamaterials for self-steepening effect. <i>Optik</i> , 2018 , 154, 545-550	2.5	8
190	Sequel to stationary optical solitons with nonlinear group velocity dispersion by extended trial function scheme. <i>Optik</i> , 2018 , 172, 636-650	2.5	8
189	Chirped singular and combo optical solitons for Gerdjikov I vanov equation using three integration forms. <i>Optik</i> , 2018 , 172, 144-149	2.5	8

188	Optical solitons with nonlocal-parabolic combo nonlinearity by Lie symmetry analysis coupled with modified G?/G-expansion. <i>Results in Physics</i> , 2019 , 15, 102713	3.7	8
187	Resonance solitons produced by azimuthal modulation in self-focusing and self-defocusing materials. <i>Nonlinear Dynamics</i> , 2013 , 73, 2091-2102	5	8
186	Destruction of shape-invariant solitons in nematic liquid crystals by noise. <i>Physical Review A</i> , 2013 , 87,	2.6	8
185	Light bullets in spatially modulated Laguerre dauss optical lattices. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 2715	1.7	8
184	Analytical chirped solutions to the (3 + 1)-dimensional Gross-Pitaevskii equation for various diffraction and potential functions. <i>Physical Review E</i> , 2011 , 84, 016606	2.4	8
183	Dynamic instability of self-induced bidirectional waveguides in photorefractive media. <i>Optics Letters</i> , 2005 , 30, 750-2	3	8
182	Super-sech soliton dynamics in optical metamaterials using collective variables. <i>Facta Universitatis - Series Electronics and Energetics</i> , 2017 , 30, 39-48	0.4	8
181	Topological insulator properties of photonic kagome helical waveguide arrays. <i>Results in Physics</i> , 2019 , 12, 996-1001	3.7	8
180	Solitons in nonlinear directional couplers with optical metamaterials by unified Riccati equation approach. <i>Optik</i> , 2021 , 241, 167244	2.5	8
179	Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds. <i>Nonlinear Dynamics</i> , 2017 , 89, 1637-1649	5	7
178	The virial theorem and ground state energy estimates of nonlinear Schrdinger equations in (mathbb {R}^2) with square root and saturable nonlinearities in nonlinear optics. <i>Calculus of Variations and Partial Differential Equations</i> , 2017 , 56, 1	1.5	7
177	Giant parabolic nonlinearities at infrared in . <i>Annals of Physics</i> , 2015 , 361, 107-119	2.5	7
176	Chirped solitons in optical metamaterials with parabolic law nonlinearity by extended trial function method. <i>Optik</i> , 2018 , 160, 92-99	2.5	7
175	Conservation laws for perturbed solitons in optical metamaterials. <i>Results in Physics</i> , 2018 , 8, 898-902	3.7	7
174	Nonlinear Airy Light Bullets in a 3D Self-Defocusing Medium. <i>Annalen Der Physik</i> , 2018 , 530, 1800059	2.6	7
173	Ground states of nonlinear Schrdinger systems with saturable nonlinearity in R2 for two counterpropagating beams. <i>Journal of Mathematical Physics</i> , 2014 , 55, 011505	1.2	7
172	Using graphical processing units to solve the multidimensional Ginzburg[landau equation. <i>Physica Scripta</i> , 2012 , T149, 014036	2.6	7
171	Steady-state and dynamical Anderson localization of counterpropagating beams in two-dimensional photonic lattices. <i>Physical Review A</i> , 2010 , 81,	2.6	7

(1995-2020)

170	Solitons in nonlinear directional couplers with optical metamaterials by first integral method. <i>Optik</i> , 2020 , 218, 165208	2.5	7
169	Solitions in magneto-optic waveguides with anti-cubic nonlinearity. <i>Optik</i> , 2020 , 222, 165313	2.5	7
168	Cubicquartic optical solitons with Kudryashov's arbitrary form of nonlinear refractive index. <i>Optik</i> , 2021 , 238, 166747	2.5	7
167	Spatiotemporal soliton supported by parity-time symmetric potential with competing nonlinearities. <i>Europhysics Letters</i> , 2016 , 115, 14006	1.6	7
166	Multipole solitons in a cold atomic gas with a parity-time symmetric potential. <i>Nonlinear Dynamics</i> , 2019 , 95, 2325-2332	5	7
165	Stochastic perturbation of optical Gaussons with bandpass filters and multi-photon absorption. <i>Optik</i> , 2019 , 178, 297-300	2.5	7
164	Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by extended Jacobi's elliptic function expansion. <i>Optik</i> , 2019 , 178, 117-121	2.5	7
163	Manipulation of Airy Beams in Dynamic Parabolic Potentials. <i>Annalen Der Physik</i> , 2020 , 532, 1900584	2.6	6
162	Soliton perturbation and conservation laws in magneto-optic waveguides with parabolic law nonlinearity. <i>Optik</i> , 2020 , 220, 165196	2.5	6
161	Insight into the Interactions of Amyloid Esheets with Graphene Flakes: Scrutinizing the Role of Aromatic Residues in Amyloids that Interact with Graphene. <i>ChemPhysChem</i> , 2018 , 19, 1226-1233	3.2	6
160	Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrdinger equation and the Gross-Pitaevskii equation using a variational approach. <i>Optics Express</i> , 2015 , 23, 10616-30	3.3	6
159	Three-dimensional nonparaxial accelerating beams from the transverse Whittaker integral. <i>Europhysics Letters</i> , 2014 , 107, 34001	1.6	6
158	Perturbed fundamental solitons in nonlocal uniaxial nematic liquid crystals. <i>Optics Communications</i> , 2013 , 286, 309-312	2	6
157	Ground-state counterpropagating solitons in photorefractive media with saturable nonlinearity. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 1036	1.7	6
156	Defect-controlled transverse localization of light in disordered photonic lattices. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 898	1.7	6
155	Localized nonlinear wavepackets with radial imuthal modulated nonlinearity and an external potential. <i>Physica Scripta</i> , 2011 , 84, 055001	2.6	6
154	Exact spatiotemporal wave and soliton solutions to the generalized (3+1)-dimensional nonlinear Schrdinger equation with linear potential. <i>Physica Scripta</i> , 2011 , 83, 065001	2.6	6
153	Photorefractive ring oscillators. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1995 , 12, 1028	1.7	6

152	Symmetries of photorefractive four-wave mixing. <i>Physical Review A</i> , 1992 , 45, 5061-5064	2.6	6
151	Characteristics and classification of gleyic soils of Banat. <i>Ratarstvo I Povrtarstvo</i> , 2011 , 48, 375-382	0.2	6
150	Family of optical solitons for perturbed FokasIlenells equation. <i>Optik</i> , 2021 , 249, 168224	2.5	6
149	Conservation laws for optical solitons with polynomial and triple-power laws of refractive index. <i>Optik</i> , 2020 , 202, 163476	2.5	6
148	Breather solutions of the nonlocal nonlinear self-focusing Schrödinger equation. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2021 , 395, 127228	2.3	6
147	Optical solitons in birefringent fibers with Lakshmanan Porsezian Daniel model by the aid of a few insightful algorithms. <i>Optik</i> , 2020 , 200, 163281	2.5	6
146	Fraction-Dimensional Accessible Solitons in a Parity-Time Symmetric Potential. <i>Annalen Der Physik</i> , 2018 , 530, 1700311	2.6	6
145	Embedded solitons in the ((2+1))-dimensional sine-Gordon equation. <i>Nonlinear Dynamics</i> , 2020 , 100, 15	1 9 -15	265
144	Cubic quintic Ginzburg Landau equation as a model for resonant interaction of EM field with nonlinear media. <i>Optical and Quantum Electronics</i> , 2020 , 52, 1	2.4	5
143	Chirped dispersive bright and singular optical solitons with SchrdingerHirota equation. <i>Optik</i> , 2018 , 168, 192-195	2.5	5
142	Reply to Comment on Bolitons in highly nonlocal nematic liquid crystals: Variational approach <i>Physical Review A</i> , 2013 , 87,	2.6	5
141	Fresnel diffraction patterns as accelerating beams. <i>Europhysics Letters</i> , 2013 , 104, 34007	1.6	5
140	Vortex solitons at the boundaries of photonic lattices. <i>Optics Express</i> , 2011 , 19, 26232-8	3.3	5
139	Vectorial two-beam mixing in photorefractive crystals. <i>Optics Communications</i> , 1994 , 109, 338-347	2	5
138	Wavelength Selective Supercontinuum Signal Generated from Photonic Crystal Fibers for Microscopic Object Detection. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2016 , 11, 497-505	1.3	5
137	Asymmetric conical diffraction in dislocated edge-centered square lattices. <i>Optics Express</i> , 2019 , 27, 63	09:630	095
136	Cubicquartic solitons in couplers with optical metamaterials having polynomial law of nonlinearity. <i>Optik</i> , 2021 , 248, 168087	2.5	5
135	Dispersive optical dromions and domain walls with a few golden integration formulae. <i>Optik</i> , 2020 , 202, 163439	2.5	5

(2021-2021)

134	Chirped superflaussian and superflech pulse perturbation of nonlinear Schröinger's equation with quadraticflubic nonlinearity by variational principle. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2021 , 396, 127231	2.3	5	
133	Solitons in spin-orbit-coupled systems with fractional spatial derivatives. <i>Chaos, Solitons and Fractals</i> , 2021 , 152, 111406	9.3	5	
132	Optical soliton perturbation in parabolic law medium having weak non-local nonlinearity by a couple of strategic integration architectures. <i>Results in Physics</i> , 2019 , 13, 102334	3.7	4	
131	Ab Initio Study of the Electronic, Vibrational, and Mechanical Properties of the Magnesium Diboride Monolayer. <i>Condensed Matter</i> , 2019 , 4, 37	1.8	4	
130	Nonautonomous vector matter waves in two-component Bose-Einstein condensates with combined time-dependent harmonic-lattice potential. <i>Journal of Optics (United Kingdom)</i> , 2015 , 17, 10!	56 0 5	4	
129	Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor. <i>Annals of Physics</i> , 2015 , 363, 114-121	2.5	4	
128	Vortex solitons in the (2 + 1)-dimensional nonlinear Schrdinger equation with variable diffraction and nonlinearity coefficients. <i>Physica Scripta</i> , 2013 , 87, 045401	2.6	4	
127	Accessible spatiotemporal parabolic-cylinder solitons. <i>Journal of Physics B: Atomic, Molecular and Optical Physics</i> , 2013 , 46, 075401	1.3	4	
126	Variational approach versus accessible soliton approximation in nonlocal, nonlinear media. <i>Physica Scripta</i> , 2014 , T162, 014003	2.6	4	
125	Superpositions of Laguerrefaussian Beams in Strongly Nonlocal Left-handed Materials. <i>Communications in Theoretical Physics</i> , 2010 , 53, 749-754	2.4	4	
124	Localized Spatial Soliton Excitations in (2 + 1)-Dimensional Nonlinear Schrdinger Equation with Variable Nonlinearity and an External Potential. <i>Communications in Theoretical Physics</i> , 2012 , 57, 127-1	32 ^{2.4}	4	
123	Breathers in biased highly nonlocal uniaxial nematic liquid crystals. <i>Physica Scripta</i> , 2012 , 85, 015403	2.6	4	
122	Counterpropagating beams in rotationally symmetric photonic lattices. <i>Optical Materials</i> , 2008 , 30, 117	′3 ₃ .1 ₅ 1.7	6 4	
121	Photorefractive ring resonators with vectorial two-beam coupling: Theory and applications. <i>Physical Review A</i> , 1995 , 52, 671-680	2.6	4	
120	Fungal diversity as influenced by soil characteristics. Zemdirbyste, 2017, 104, 305-310	1.1	4	
119	Generating Lieb and super-honeycomb lattices by employing the fractional Talbot effect. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 862	1.7	4	
118	Phenotypic reaction of wheat grown on different soil types. <i>Genetika</i> , 2009 , 41, 169-177	0.6	4	
117	Gray optical dips of Kundu-Mukherjee-Naskar model. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2021 , 401, 127341	2.3	4	

116	Infrared supercontinuum generation in multiple quantum well nanostructures. <i>Journal of Optics</i> (United Kingdom), 2016 , 18, 115001	1.7	4
115	Airy-Tricomi-Gaussian compressed light bullets. European Physical Journal Plus, 2016 , 131, 1	3.1	4
114	Circular Polarization Selective Metamaterial Absorber in Terahertz Frequency Range. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2021 , 27, 1-6	3.8	4
113	Optical soliton perturbation with full nonlinearity by extended trial function method. <i>Optical and Quantum Electronics</i> , 2018 , 50, 1	2.4	4
112	Rotating solitons supported by a spiral waveguide. <i>Physical Review A</i> , 2018 , 98,	2.6	4
111	Vortex solitons in Bose E instein condensates with inhomogeneous attractive nonlinearities and a trapping potential. <i>Applied Mathematics Letters</i> , 2018 , 86, 173-178	3.5	4
110	Cubicquartic optical soliton perturbation with Fokas Lenells equation by sine Lordon equation approach. <i>Results in Physics</i> , 2021 , 26, 104409	3.7	4
109	Cubicquartic optical soliton perturbation and conservation laws with LakshmananPorsezianDaniel model: Undetermined coefficients. <i>Journal of Nonlinear Optical Physics and Materials</i> ,2150007	0.8	4
108	Cubicquartic solitons for twin-core couplers in optical metamaterials. <i>Optik</i> , 2021 , 245, 167632	2.5	4
107	New traveling wave and soliton solutions of the sine-Gordon equation with a variable coefficient. <i>Optik</i> , 2019 , 198, 163247	2.5	3
106	Self-similar solitons in optical waveguides with dual-power law refractive index. <i>Laser Physics</i> , 2019 , 29, 075401	1.2	3
105	Semianalytical study of the propagation of an ultrastrong femtosecond laser pulse in a plasma with ultrarelativistic electron jitter. <i>Physics of Plasmas</i> , 2015 , 22, 043110	2.1	3
104	Solitons in optical metamaterials having parabolic law nonlinearity with detuning effect and Raman scattering. <i>Optik</i> , 2018 , 164, 606-609	2.5	3
103	Dark ring soliton in two-dimensional nonlinear self-defocusing medium. <i>Optik</i> , 2018 , 156, 447-452	2.5	3
102	Planar versus three-dimensional growth of metal nanostructures at graphene. <i>Carbon</i> , 2016 , 96, 216-22	2 2 10.4	3
101	Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study. <i>Materials Chemistry and Physics</i> , 2019 , 236, 121816	4.4	3
100	Propagation of chirped optical similaritons in inhomogeneous tapered centrosymmetric nonlinear waveguides doped with resonant impurities. <i>Laser Physics</i> , 2019 , 29, 085401	1.2	3
99	Disorder-induced localization of light near edges of nonlinear photonic lattices. <i>Optics Communications</i> , 2012 , 285, 352-355	2	3

(2015-2015)

98	Singular and Topological Solitons in Optical Metamaterials by Kudryashov Method and G?/G-Expansion Scheme. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 5630-5635	0.3	3
97	Light bullets in three-dimensional complex Ginzburg-Landau equation with modulated Kummer-Gauss photonic lattice. <i>Europhysics Letters</i> , 2014 , 108, 34001	1.6	3
96	Variational and accessible soliton approximations to multidimensional solitons in highly nonlocal nonlinear media. <i>Optics Express</i> , 2014 , 22, 31842-52	3.3	3
95	Counterpropagating pattern dynamics: From narrow to broad beams. <i>Optics Communications</i> , 2008 , 281, 2291-2300	2	3
94	Exact solution to four-wave mixing with complex couplings: reflection geometry. <i>Optics Letters</i> , 1996 , 21, 321-3	3	3
93	Spike stability parameters in wheat grown on solonetz soil. <i>Genetika</i> , 2009 , 41, 199-205	0.6	3
92	Solitons in the two-dimensional fractional Schrdinger equation with radially symmetric PT potential. <i>Optik</i> , 2020 , 202, 163652	2.5	3
91	Accessible solitons in three-dimensional parabolic cylindrical coordinates. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126914	2.3	3
90	Resonant optical solitons with fractional temporal evolution by modified extended direct algebraic method. <i>Optik</i> , 2019 , 181, 1075-1079	2.5	3
89	Gausson parameter dynamics in ENZ-material based waveguides using moment method. <i>Optik</i> , 2021 , 227, 165273	2.5	3
88	Dyakonov Surface Waves: Anisotropy-Enabling Confinement on the Edge 2018 ,		3
87	Algorithm for dark solitons with RadhakrishnanKundullakshmanan model in an optical fiber. <i>Results in Physics</i> , 2021 , 30, 104806	3.7	3
86	Chirped optical solitons having polynomial law of nonlinear refractive index with self-steepening and nonlinear dispersion. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2021 , 417, 127698	2.3	3
85	Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. <i>Nonlinear Dynamics</i> , 2022 , 108, 1671-1680	5	3
84	The fractional dimensional spatiotemporal accessible solitons supported by PT-symmetric complex potential. <i>Annals of Physics</i> , 2017 , 378, 432-439	2.5	2
83	Talbot carpets by rogue waves of extended nonlinear Schrllinger equations. <i>Nonlinear Dynamics</i> , 2019 , 97, 1215-1225	5	2
82	Light bullets in coupled nonlinear Schrdinger equations with spatially modulated coefficients and Bessel trapping potential. <i>Journal of Modern Optics</i> , 2015 , 62, 683-692	1.1	2
81	Beam splitter and combiner based on Bloch oscillation in a spatially modulated waveguide array. <i>Journal of Optics (United Kingdom)</i> , 2015 , 17, 045606	1.7	2

80	Excitations of nonlinear local waves described by the sinh-Gordon equation with a variable coefficient. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126264	2.3	2
79	Vector vortex solitons in two-component BoseEinstein condensates with modulated nonlinearities and a harmonic trap. <i>Journal of Modern Optics</i> , 2018 , 65, 1542-1548	1.1	2
78	Optical Bloch Oscillations of a Dual Airy Beam. Annalen Der Physik, 2018, 530, 1700307	2.6	2
77	Embedded solitons with (2) and (B) nonlinear susceptibilities by extended trial equation method. <i>Optik</i> , 2018 , 154, 1-9	2.5	2
76	Linear modulational stability analysis of Ginzburg[landau dissipative vortices. <i>Optical and Quantum Electronics</i> , 2016 , 48, 1	2.4	2
75	Optical soliton perturbation with differential group delay and parabolic law nonlinearity using exp([2(]) -expansion method. <i>Optik</i> , 2018 , 172, 826-831	2.5	2
74	Lateral beam shift at transmission through layered structures with negative index material. <i>Optics Communications</i> , 2012 , 285, 1148-1154	2	2
73	Tamm plasmon modes on semi-infinite metallodielectric superlattices. <i>Scientific Reports</i> , 2017 , 7, 3746	4.9	2
72	Dark spatiotemporal optical solitary waves in self-defocusing nonlinear media. <i>Nonlinear Dynamics</i> , 2017 , 87, 2171-2177	5	2
71	Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma. <i>Physica Scripta</i> , 2017 , 92, 124006	2.6	2
70	Interactions of incoherent localized beams in a photorefractive medium. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, 2258	1.7	2
69	Two-Dimensional Spatial Solitons in Nematic Liquid Crystals. <i>Communications in Theoretical Physics</i> , 2009 , 51, 324-330	2.4	2
68	Oscillation versus amplification in double phase conjugation. <i>Optics Communications</i> , 1996 , 131, 279-28	4 <u>2</u>	2
67	A generalized nonlinear Schrdinger equation and the motion of inhomogeneous vortex filaments in a fluid. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1983 , 99, 293-294	2.3	2
66	Two-dimensional asymmetric Laguerre-Gaussian diffraction-free beams. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2022 , 423, 127818	2.3	2
65	Three-dimensional spatiotemporal nondiffracting parabolic cylinder beams. <i>Physical Review A</i> , 2021 , 104,	2.6	2
64	Chirped optical soliton propagation in birefringent fibers modeled by coupled Fokas-Lenells system. <i>Chaos, Solitons and Fractals,</i> 2022 , 155, 111751	9.3	2
63	The variation of yield components in wheat (Triticum aestivum L.) in response to stressful growing conditions of alkaline soil. <i>Genetika</i> , 2010 , 42, 545-555	0.6	2

62	Three-dimensional Spatiotemporal Accessible Solitons in a PT-symmetric Potential. <i>Journal of the Optical Society of Korea</i> , 2012 , 16, 425-431		2
61	Optical soliton perturbation with exotic forms of nonlinear refractive index. <i>Optik</i> , 2020 , 223, 165329	2.5	2
60	Dark solitons in the inhomogeneous self-defocusing Kerr media. <i>Optik</i> , 2020 , 222, 165417	2.5	2
59	Solitons in magnetobptic waveguides with parabolic law nonlinearity. <i>Optik</i> , 2020 , 222, 165314	2.5	2
58	Optical soliton perturbation with Kudryashov law of arbitrary refractive index. <i>Journal of Optics</i> (India), 2021 , 50, 245-252	1.3	2
57	Conservation laws for optical solitons with non-local nonlinearity. <i>Optik</i> , 2019 , 178, 846-849	2.5	2
56	Beam Steering Efficiency in Resonant Reflective Metasurfaces. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2021 , 27, 1-8	3.8	2
55	Reversible Olefin Addition to Extended Lattices of a NickelBelenium Framework. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 22424-22434	3.8	2
54	Vortex solitons produced in spatially modulated linear and nonlinear refractive index waveguides. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2018 , 35, 410	1.7	2
53	Cubicquartic solitons in couplers with optical metamaterials having dual-power law of nonlinearity. <i>Optik</i> , 2021 , 247, 167969	2.5	2
52	Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study. <i>Nanotechnology</i> , 2017 , 28, 495706	3.4	1
51	Conical Diffraction from Approximate Dirac Cone States in a Superhoneycomb Lattice. <i>Annalen Der Physik</i> , 2019 , 531, 1900295	2.6	1
50	Generation of spatiotemporal Airy-Bessel wave packets. <i>Optik</i> , 2019 , 183, 441-444	2.5	1
49	Quasi-stable rotating solitons supported by a single spiraling waveguide. <i>Optical and Quantum Electronics</i> , 2018 , 50, 1	2.4	1
48	Localized Airy Wave Packets in a Self-Defocusing Kerr Medium. IEEE Photonics Journal, 2018, 10, 1-9	1.8	1
47	Vector matter waves in two-component Bose-Einstein condensates with spatially modulated nonlinearities. <i>Europhysics Letters</i> , 2018 , 121, 34004	1.6	1
46	Coherent and Incoherent Nonparaxial Self-Accelerating Weber Beams. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-9	1.8	1
45	Exact results for the jammed state of binary mixtures of superdisks on the plane. <i>Physica A:</i> Statistical Mechanics and Its Applications, 2016 , 441, 93-99	3.3	1

44	Stability properties of a thin relativistic beam propagation in a magnetized plasma. <i>European Physical Journal D</i> , 2018 , 72, 1	1.3	1
43	Reduced magneto-hydrodynamic theory of coherent magnetic chains in the solar wind. <i>Journal of Plasma Physics</i> , 2018 , 84,	2.7	1
42	Nonlinear control of spatial Thirring vector solitons in electromagnetically induced transparency. <i>Optik</i> , 2019 , 193, 163029	2.5	1
41	An exact (2 + 1)-dimensional optical soliton with spatially modulated nonlinearity and an external potential. <i>European Physical Journal D</i> , 2014 , 68, 1	1.3	1
40	Comment on Bpatial optical solitons in highly nonlocal media Physical Review A, 2017, 95,	2.6	1
39	Modulation instability of solutions to the complex Ginzburg[landau equation. <i>Physica Scripta</i> , 2014 , T162, 014002	2.6	1
38	Conservation and transfer of orbital angular momentum of light in optically induced photonic lattices. <i>Journal of Optics (United Kingdom)</i> , 2012 , 14, 075204	1.7	1
37	Influence of a medium nonlinearity on Anderson localization of light in optically induced photonic lattices. <i>Optical Engineering</i> , 2012 , 51, 088001-1	1.1	1
36	Counterpropagating surface solitons in two-dimensional photonic lattices. <i>Optics Express</i> , 2009 , 17, 215	135321	1
35	A solid-state solar-powered heat transfer device. <i>Journal of Applied Physics</i> , 1979 , 50, 5682-5685	2.5	1
34	Plasmonic enhancement of light trapping in photodetectors. <i>Facta Universitatis - Series Electronics and Energetics</i> , 2014 , 27, 183-203	0.4	1
33	Localized pulses in optical fibers governed by perturbed FokasIlenells equation. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2022 , 421, 127782	2.3	1
32	Localized dynamical behavior in the (2+1)-dimensional sine-Gordon equation. <i>Optik</i> , 2020 , 204, 164115	2.5	1
31	Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by traveling waves and Adomian decomposition. <i>Optical and Quantum Electronics</i> , 2021 , 53, 1	2.4	1
30	Formation of chirped kink similaritons in non-Kerr media with varying Raman effect. <i>Results in Physics</i> , 2021 , 26, 104381	3.7	1
29	Highly dispersive optical solitons and conservation laws with Kudryashov sextic power-law of nonlinear refractive index. <i>Optik</i> , 2021 , 240, 166915	2.5	1
28	Cubicquartic polarized optical solitons and conservation laws for perturbed Fokas lenells model. Journal of Nonlinear Optical Physics and Materials, 2150005	0.8	1
27	On different aspects of the optical rogue waves nature. <i>Nonlinear Dynamics</i> , 2022 , 108, 1655-1670	5	1

(2020-2022)

26	Controllable two-dimensional diffraction-free polygon beams. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2022 , 432, 128009	2.3	1
25	Higher-order breathers as quasi-rogue waves on a periodic background. <i>Nonlinear Dynamics</i> , 2022 , 107, 3819	5	O
24	Cubicquartic solitons in couplers with optical metamaterials having triple-power law nonlinearity (sequel to polynomial law). <i>Optik</i> , 2022 , 250, 168264	2.5	О
23	Solitons and conservation laws in magneto-optic waveguides with polynomial law nonlinearity. <i>Optik</i> , 2020 , 223, 165397	2.5	O
22	Adiabatic Vlasov theory of ultrastrong femtosecond laser pulse propagation in plasma. The scaling of ultrarelativistic quasi-stationary states: spikes, peakons, and bubbles. <i>Physics of Plasmas</i> , 2019 , 26, 123104	2.1	0
21	Nonparaxial Accelerating Electron Beams. IEEE Journal of Quantum Electronics, 2017, 53, 1-6	2	
20	Two-dimensional dark solitons in diffusive nonlocal nonlinear media. <i>Journal of Optics (India)</i> , 2015 , 44, 172-177	1.3	
19	Light propagation along a helical waveguide: variational approach. <i>Optical and Quantum Electronics</i> , 2020 , 52, 1	2.4	
18	Reduction of power-dependent walk-off in bias-free nematic liquid crystals. <i>Optical and Quantum Electronics</i> , 2016 , 48, 1	2.4	
17	Dipole solitons in highly nonlocal nematic liquid crystals: finite size effects. <i>Physica Scripta</i> , 2014 , T162, 014004	2.6	
16	Anderson localization of counterpropagating beams in optically induced photonic lattices. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2011 , 8, 2593-2596		
15	Counterpropagating solitons at boundary of photonic lattices. <i>Optics Letters</i> , 2010 , 35, 2355-7	3	
14	Surface vortex solitons near boundaries of photonic lattices. <i>Physica Scripta</i> , 2012 , T149, 014040	2.6	
13	Wave mixing in photorefractive crystals with saturable couplings: stable solutions and instabilities. <i>Optics Communications</i> , 1993 , 96, 283-288	2	
12	New efficient algorithm for solution of the driven nonlinear Schrdinger equation. <i>Computer Physics Communications</i> , 1984 , 32, 239-243	4.2	
11	Depth distribution of organic matter concentration and stocks in soils of Vojvodina. <i>Zbornik Matice Srpske Za Prirodne Nauke</i> , 2020 , 19-29	0.3	
10	Multi-elliptic rogue wave clusters of the nonlinear Schrdinger equation on different backgrounds. <i>Nonlinear Dynamics</i> ,1	5	
9	Solitons in fiber Bragg gratings with cubicquartic dispersive reflectivity having Kerr law of nonlinear refractive index. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2020 , 29, 2050011	0.8	

8	Cubicquartic solitons in couplers with optical metamaterials having power law of refractive index. Journal of Nonlinear Optical Physics and Materials, 2020 , 29, 2050009	0.8
7	Asymmetric conical diffraction in dislocated edge-centered square lattices: erratum. <i>Optics Express</i> , 2019 , 27, 24498	3.3
6	Symmetries of photorefractive four-wave mixing 1995 , 281-284	
5	Soliton Families in Strongly Nonlocal Media111-138	
4	Computational investigation of cobalt and copper bis (oxothiolene) complexes as an alternative for olefin purification. <i>Journal of Molecular Modeling</i> , 2020 , 26, 205	2
3	Optical soliton perturbation with Kudryashov law of refractive index by modified sub-ODE approach. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2021 , 30, 2150004	0.8
2	Multipole solitons in cold atomic gases with parity-time potential. <i>Optik</i> , 2021 , 243, 167386	2.5
1	Cubicquartic solitons in couplers with optical metamaterials having parabolic law nonlinearity. Optik. 2021 . 247. 167960	2.5