Sandra Pinkert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3650800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic Analysis of the Multimeric Nuclear Egress Complex of Human Cytomegalovirus. Molecular and Cellular Proteomics, 2014, 13, 2132-2146.	3.8	79
2	Cardiac-targeted RNA interference mediated by an AAV9 vector improves cardiac function in coxsackievirus B3 cardiomyopathy. Journal of Molecular Medicine, 2008, 86, 987-997.	3.9	73
3	Prevention of Cardiac Dysfunction in Acute Coxsackievirus B3 Cardiomyopathy by Inducible Expression of a Soluble Coxsackievirus-Adenovirus Receptor. Circulation, 2009, 120, 2358-2366.	1.6	67
4	NOD2 (Nucleotide-Binding Oligomerization Domain 2) Is a Major Pathogenic Mediator of Coxsackievirus B3-Induced Myocarditis. Circulation: Heart Failure, 2017, 10, .	3.9	60
5	The immunoproteasomeâ€specific inhibitor ONX 0914 reverses susceptibility to acute viral myocarditis. EMBO Molecular Medicine, 2018, 10, 200-218.	6.9	48
6	Virus-Host Coevolution in a Persistently Coxsackievirus B3-Infected Cardiomyocyte Cell Line. Journal of Virology, 2011, 85, 13409-13419.	3.4	45
7	Combination of soluble coxsackievirus-adenovirus receptor and anti-coxsackievirus siRNAs exerts synergistic antiviral activity against coxsackievirus B3. Antiviral Research, 2009, 83, 298-306.	4.1	24
8	A Novel Artificial MicroRNA Expressing AAV Vector for Phospholamban Silencing in Cardiomyocytes Improves Ca2+ Uptake into the Sarcoplasmic Reticulum. PLoS ONE, 2014, 9, e92188.	2.5	19
9	Heparan Sulfate Binding Coxsackievirus B3 Strain PD: A Novel Avirulent Oncolytic Agent Against Human Colorectal Carcinoma. Human Gene Therapy, 2018, 29, 1301-1314.	2.7	19
10	Anti-adenoviral Artificial MicroRNAs Expressed from AAV9 Vectors Inhibit Human Adenovirus Infection in Immunosuppressed Syrian Hamsters. Molecular Therapy - Nucleic Acids, 2017, 8, 300-316.	5.1	18
11	Combination of RNA Interference and Virus Receptor Trap Exerts Additive Antiviral Activity in Coxsackievirus B3-induced Myocarditis in Mice. Journal of Infectious Diseases, 2015, 211, 613-622.	4.0	17
12	Development of a new mouse model for coxsackievirus-induced myocarditis by attenuating coxsackievirus B3 virulence in the pancreas. Cardiovascular Research, 2020, 116, 1756-1766.	3.8	16
13	The Coxsackievirus and Adenovirus Receptor: Glycosylation and the Extracellular D2 Domain Are Not Required for Coxsackievirus B3 Infection. Journal of Virology, 2016, 90, 5601-5610.	3.4	15
14	Infection of iPSC Lines with Miscarriage-Associated Coxsackievirus and Measles Virus and Teratogenic Rubella Virus as a Model for Viral Impairment of Early Human Embryogenesis. ACS Infectious Diseases, 2017, 3, 886-897.	3.8	15
15	Early Treatment of Coxsackievirus B3–Infected Animals With Soluble Coxsackievirus-Adenovirus Receptor Inhibits Development of Chronic Coxsackievirus B3 Cardiomyopathy. Circulation: Heart Failure, 2019, 12, e005250.	3.9	14
16	Biological antivirals for treatment of adenovirus infections. Antiviral Therapy, 2016, 21, 559-566.	1.0	13
17	Soluble coxsackie- and adenovirus receptor (sCAR-Fc); a highly efficient compound against laboratory and clinical strains of coxsackie-B-virus. Antiviral Research, 2016, 136, 1-8.	4.1	13
18	MiRâ€375â€mediated suppression of engineered coxsackievirus B3 in pancreatic cells. FEBS Letters, 2020, 594, 763-775.	2.8	9

SANDRA PINKERT

#	Article	IF	CITATIONS
19	Coxsackievirus B3 Infection of Human iPSC Lines and Derived Primary Germ-Layer Cells Regarding Receptor Expression. International Journal of Molecular Sciences, 2021, 22, 1220.	4.1	3
20	Single-Point Mutations within the Coxsackie B Virus Receptor-Binding Site Promote Resistance against Soluble Virus Receptor Traps. Journal of Virology, 2020, 94, .	3.4	2
21	Exploration of Analgesia with Tramadol in the Coxsackievirus B3 Myocarditis Mouse Model. Viruses, 2021, 13, 1222.	3.3	2
22	A Conserved Cysteine Residue in Coxsackievirus B3 Protein 3A with Implication for Elevated Virulence. Viruses, 2022, 14, 769.	3.3	0