
## Akitsu Hotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3650106/publications.pdf Version: 2024-02-01



Δειτου Ηοττλ

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Stage-Specific Optimization of Activin/Nodal and BMP Signaling Promotes Cardiac Differentiation of Mouse and Human Pluripotent Stem Cell Lines. Cell Stem Cell, 2011, 8, 228-240. | 5.2 | 1,034     |
| 2  | Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 2015, 4, 143-154.    | 2.3 | 459       |
| 3  | Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune<br>Compatibility. Cell Stem Cell, 2019, 24, 566-578.e7.                                     | 5.2 | 356       |
| 4  | Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nature Methods, 2009, 6, 370-376.                                                           | 9.0 | 274       |
| 5  | Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Human Molecular Genetics, 2011, 20, 2103-2115.                  | 1.4 | 241       |
| 6  | Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the<br>Brain of a Nonhuman Primate. Stem Cell Reports, 2013, 1, 283-292.           | 2.3 | 233       |
| 7  | Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nature Communications, 2020, 11, 1334.                             | 5.8 | 197       |
| 8  | Hair Follicle Dermal Stem Cells Regenerate the Dermal Sheath, Repopulate the Dermal Papilla, and<br>Modulate Hair Type. Developmental Cell, 2014, 31, 543-558.                    | 3.1 | 189       |
| 9  | Efficient and Reproducible Myogenic Differentiation from Human iPS Cells: Prospects for Modeling<br>Miyoshi Myopathy In Vitro. PLoS ONE, 2013, 8, e61540.                         | 1.1 | 188       |
| 10 | The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Science<br>Translational Medicine, 2017, 9, .                                           | 5.8 | 182       |
| 11 | Retroviral vector silencing during iPS cell induction: An epigenetic beacon that signals distinct pluripotent states. Journal of Cellular Biochemistry, 2008, 105, 940-948.       | 1.2 | 142       |
| 12 | Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts<br>Derived using a Human iPSC-Based Model. Cell Reports, 2016, 15, 2301-2312.       | 2.9 | 141       |
| 13 | Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO Journal, 2011, 30, 1778-1789.                                                                 | 3.5 | 134       |
| 14 | Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS<br>Mice. Stem Cell Reports, 2014, 3, 242-249.                                  | 2.3 | 131       |
| 15 | CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nature Communications, 2019, 10, 5302.                                                                | 5.8 | 127       |
| 16 | From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing. Annual Review of Genetics, 2015, 49, 47-70.                                                    | 3.2 | 111       |
| 17 | Enhancing T Cell Receptor Stability in Rejuvenated iPSC-Derived T Cells Improves Their Use in Cancer<br>Immunotherapy. Cell Stem Cell, 2018, 23, 850-858.e4.                      | 5.2 | 110       |
| 18 | Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nature Communications, 2021, 12, 7101.                                | 5.8 | 100       |

Ακιτςυ Ηόττα

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem<br>Cell, 2020, 26, 251-261.e8.                                                                                                        | 5.2  | 96        |
| 20 | Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch. Nucleic Acids<br>Research, 2017, 45, e118-e118.                                                                                                      | 6.5  | 88        |
| 21 | Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of<br>Controlled Release, 2022, 342, 345-361.                                                                                         | 4.8  | 82        |
| 22 | EOS lentiviral vector selection system for human induced pluripotent stem cells. Nature Protocols, 2009, 4, 1828-1844.                                                                                                                | 5.5  | 75        |
| 23 | InÂVitro Disease Modeling of Hermansky-Pudlak Syndrome Type 2ÂUsing Human Induced Pluripotent Stem<br>Cell-Derived Alveolar Organoids. Stem Cell Reports, 2019, 12, 431-440.                                                          | 2.3  | 71        |
| 24 | Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nature Biomedical Engineering, 2021, 5, 429-440.                                                                   | 11.6 | 70        |
| 25 | Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons.<br>Scientific Reports, 2016, 6, 34904.                                                                                                   | 1.6  | 67        |
| 26 | MECP2 Isoform-Specific Vectors with Regulated Expression for Rett Syndrome Gene Therapy. PLoS ONE, 2009, 4, e6810.                                                                                                                    | 1.1  | 66        |
| 27 | iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell<br>Immunity. Stem Cell Reports, 2020, 14, 49-59.                                                                                 | 2.3  | 57        |
| 28 | Efficient genomic correction methods in human iPS cells using CRISPR–Cas9 system. Methods, 2016,<br>101, 27-35.                                                                                                                       | 1.9  | 54        |
| 29 | A patient-derived iPSC model revealed oxidative stress increases facioscapulohumeral muscular dystrophy-causative <i>DUX4</i> . Human Molecular Genetics, 2018, 27, 4024-4035.                                                        | 1.4  | 49        |
| 30 | PKD1-Dependent Renal Cystogenesis in Human Induced Pluripotent Stem Cell-Derived Ureteric<br>Bud/Collecting Duct Organoids. Journal of the American Society of Nephrology: JASN, 2020, 31,<br>2355-2371.                              | 3.0  | 47        |
| 31 | Delivery of Full-Length Factor VIII Using a piggyBac Transposon Vector to Correct a Mouse Model of<br>Hemophilia A. PLoS ONE, 2014, 9, e104957.                                                                                       | 1.1  | 44        |
| 32 | Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells. Biochemical and Biophysical Research Communications, 2011, 407, 321-326.                             | 1.0  | 40        |
| 33 | Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells. Scientific<br>Reports, 2013, 3, 1978.                                                                                                          | 1.6  | 40        |
| 34 | Targeted gene correction of RUNX1 in induced pluripotent stem cells derived from familial platelet<br>disorder with propensity to myeloid malignancy restores normal megakaryopoiesis. Experimental<br>Hematology, 2015, 43, 849-857. | 0.2  | 40        |
| 35 | A novel ADPKD model using kidney organoids derived from disease-specific human iPSCs. Biochemical and Biophysical Research Communications, 2020, 529, 1186-1194.                                                                      | 1.0  | 38        |
| 36 | Genetic correction using engineered nucleases for gene therapy applications. Development Growth and Differentiation, 2014, 56, 63-77.                                                                                                 | 0.6  | 37        |

Ακιτςυ Ηόττα

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs. Nature<br>Communications, 2018, 9, 1387.                                                                           | 5.8  | 35        |
| 38 | Dual inhibition of TMPRSS2 and Cathepsin B prevents SARS-CoV-2 infection in iPS cells. Molecular<br>Therapy - Nucleic Acids, 2021, 26, 1107-1114.                                                                 | 2.3  | 35        |
| 39 | Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1766-1778.                       | 1.3  | 34        |
| 40 | Reprogramming progeria fibroblasts reâ€establishes a normal epigenetic landscape. Aging Cell, 2017, 16,<br>870-887.                                                                                               | 3.0  | 34        |
| 41 | Induced Fetal Human Muscle Stem Cells with High Therapeutic Potential in a Mouse Muscular<br>Dystrophy Model. Stem Cell Reports, 2020, 15, 80-94.                                                                 | 2.3  | 31        |
| 42 | Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene<br>Therapy of Duchenne Muscular Dystrophy. Stem Cells International, 2017, 2017, 1-11.                          | 1.2  | 30        |
| 43 | Production of anti-prion scFv-Fc fusion proteins by recombinant animal cells. Journal of Bioscience and Bioengineering, 2003, 95, 231-238.                                                                        | 1.1  | 29        |
| 44 | Retrovirus Silencing by an Epigenetic TRIM. Cell, 2007, 131, 13-14.                                                                                                                                               | 13.5 | 29        |
| 45 | Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases. International Journal of<br>Molecular Sciences, 2015, 16, 24751-24771.                                                                  | 1.8  | 28        |
| 46 | Pluripotent Stem Cell Model of Nakajo-Nishimura Syndrome Untangles Proinflammatory Pathways<br>Mediated by Oxidative Stress. Stem Cell Reports, 2018, 10, 1835-1850.                                              | 2.3  | 28        |
| 47 | Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein. Stem Cell Reports, 2021, 16, 985-996.                                           | 2.3  | 28        |
| 48 | Characterization of hiPSC-Derived Muscle Progenitors Reveals Distinctive Markers for Myogenic Cell<br>Purification Toward Cell Therapy. Stem Cell Reports, 2021, 16, 883-898.                                     | 2.3  | 26        |
| 49 | Sall1 transiently marks undifferentiated heart precursors and regulates their fate. Journal of<br>Molecular and Cellular Cardiology, 2016, 92, 158-162.                                                           | 0.9  | 23        |
| 50 | A β1-tubulin–based megakaryocyte maturation reporter system identifies novel drugs that promote platelet production. Blood Advances, 2018, 2, 2262-2272.                                                          | 2.5  | 23        |
| 51 | Comprehensive chemical secretory measurement of single cells trapped in a micro-droplet array with mass spectrometry. RSC Advances, 2015, 5, 16968-16971.                                                         | 1.7  | 22        |
| 52 | Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in<br>human cells. Scientific Reports, 2018, 8, 310.                                                            | 1.6  | 22        |
| 53 | Efficient mRNA delivery system utilizing chimeric VSVG-L7Ae virus-like particles. Biochemical and<br>Biophysical Research Communications, 2018, 505, 1097-1102.                                                   | 1.0  | 21        |
| 54 | Generation of hypoimmunogenic induced pluripotent stem cells by CRISPR-Cas9 system and detailed<br>evaluation for clinical application. Molecular Therapy - Methods and Clinical Development, 2022, 26,<br>15-25. | 1.8  | 20        |

Ακιτςυ Ηόττα

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Characterization of transient expression system for retroviral vector production. Journal of Bioscience and Bioengineering, 2006, 101, 361-368.                                                                           | 1.1 | 19        |
| 56 | A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Reports Medicine, 2021, 2, 100298.                                       | 3.3 | 17        |
| 57 | An EWS-FLI1-Induced Osteosarcoma Model Unveiled a Crucial Role of Impaired Osteogenic<br>Differentiation on Osteosarcoma Development. Stem Cell Reports, 2016, 6, 592-606.                                                | 2.3 | 16        |
| 58 | Restoration of Dystrophin Protein Expression by Exon Skipping Utilizing CRISPR-Cas9 in Myoblasts<br>Derived from DMD Patient iPS Cells. Methods in Molecular Biology, 2018, 1828, 191-217.                                | 0.4 | 16        |
| 59 | Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors.<br>Biochemical and Biophysical Research Communications, 2018, 497, 719-725.                                           | 1.0 | 15        |
| 60 | MAGI-2 orchestrates the localization of backbone proteins in the slit diaphragm of podocytes. Kidney<br>International, 2021, 99, 382-395.                                                                                 | 2.6 | 15        |
| 61 | Genome Editing Gene Therapy for Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases,<br>2015, 2, 343-355.                                                                                                      | 1.1 | 14        |
| 62 | Production of anti-CD2 chimeric antibody by recombinant animal cells. Journal of Bioscience and<br>Bioengineering, 2004, 98, 298-303.                                                                                     | 1.1 | 10        |
| 63 | Expression dynamics of HAND1/2 in inÂvitro human cardiomyocyte differentiation. Stem Cell Reports,<br>2021, 16, 1906-1922.                                                                                                | 2.3 | 9         |
| 64 | β-Globin LCR and Intron Elements Cooperate and Direct Spatial Reorganization for Gene Therapy. PLoS<br>Genetics, 2008, 4, e1000051.                                                                                       | 1.5 | 8         |
| 65 | Optimized electroporation of CRISPR-Cas9/gRNA ribonucleoprotein complex for selection-free homologous recombination in human pluripotent stem cells. STAR Protocols, 2021, 2, 100965.                                     | 0.5 | 8         |
| 66 | Contractile Activity of Myotubes Derived from Human Induced Pluripotent Stem Cells: A Model of<br>Duchenne Muscular Dystrophy. Cells, 2021, 10, 2556.                                                                     | 1.8 | 4         |
| 67 | YY1 binds to regulatory element of chicken lysozyme and ovalbumin promoters. Cytotechnology, 2007,<br>52, 159-170.                                                                                                        | 0.7 | 2         |
| 68 | Generation of a transgene-free iPSC line and genetically modified line from a facioscapulohumeral<br>muscular dystrophy type 2 (FSHD2) patient with SMCHD1 p.Lys607Ter mutation. Stem Cell Research,<br>2020, 47, 101884. | 0.3 | 2         |
| 69 | Development of alternative gene transfer techniques for exÂvivo and inÂvivo gene therapy in a canine<br>model. Regenerative Therapy, 2021, 18, 347-354.                                                                   | 1.4 | 2         |
| 70 | Natural Killer Cell Activities Against iPSCs-Derived HLA-Knockout Platelets and Megakaryocytes Reveal<br>Perfect Rejection Profiles for Allotransfusion. Blood, 2016, 128, 3841-3841.                                     | 0.6 | 2         |
| 71 | Editing Cultured Human Cells: From Cell Lines to iPS Cells. , 2015, , 45-69.                                                                                                                                              |     | 1         |
| 72 | Induced pluripotent stem cells. , 0, , 19-33.                                                                                                                                                                             |     | 0         |

5

| #  | Article                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------|-----|-----------|
| 73 | Chemical Control of iPS Cells. Trends in the Sciences, 2011, 16, 62-65. | 0.0 | Ο         |