Liangbo Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/365000/publications.pdf

Version: 2024-02-01

		687363	794594
19	513	13	19
papers	citations	h-index	g-index
10	10	10	F.C. 4
19	19	19	564
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley. BMC Genomics, 2016, 17, 889.	2.8	68
2	Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. Plant Physiology and Biochemistry, 2018, 123, 319-330.	5.8	55
3	Calmodulin HvCaM1 Negatively Regulates Salt Tolerance via Modulation of HvHKT1s and HvCAMTA4. Plant Physiology, 2020, 183, 1650-1662.	4.8	50
4	Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Plant Physiology and Biochemistry, 2018, 130, 248-257.	5.8	44
5	Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes differing in Co tolerance. Ecotoxicology and Environmental Safety, 2020, 187, 109866.	6.0	42
6	Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance. Ecotoxicology and Environmental Safety, 2017, 139, 488-495.	6.0	37
7	Transcriptome-wide m6A methylation profile reveals regulatory networks in roots of barley under cadmium stress. Journal of Hazardous Materials, 2022, 423, 127140.	12.4	33
8	Time-course of ionic responses and proteomic analysis of a Tibetan wild barley at early stage under salt stress. Plant Growth Regulation, 2017, 81, 11-21.	3.4	26
9	Transcriptomic and alternative splicing analyses reveal mechanisms of the difference in salt tolerance between barley and rice. Environmental and Experimental Botany, 2019, 166, 103810.	4.2	24
10	High accumulation of phenolics and amino acids confers tolerance to the combined stress of cobalt and copper in barley (Hordeum vulagare). Plant Physiology and Biochemistry, 2020, 155, 927-937.	5.8	22
11	Copper alleviates cobalt toxicity in barley by antagonistic interaction of the two metals. Ecotoxicology and Environmental Safety, 2019, 180, 234-241.	6.0	21
12	Genotypic difference of cadmium tolerance and the associated microRNAs in wild and cultivated barley. Plant Growth Regulation, 2019, 87, 389-401.	3.4	15
13	The Influence of Nitrogen Application Level on Eating Quality of the Two Indica-Japonica Hybrid Rice Cultivars. Plants, 2020, 9, 1663.	3.5	15
14	Transcriptome analysis reveals the tolerant mechanisms to cobalt and copper in barley. Ecotoxicology and Environmental Safety, 2021, 209, 111761.	6.0	15
15	Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles. Plant Physiology, 2022, 188, 1248-1263.	4.8	15
16	OsC2DP, a Novel C2 Domain-Containing Protein Is Required for Salt Tolerance in Rice. Plant and Cell Physiology, 2019, 60, 2220-2230.	3.1	11
17	Physiological mechanisms for antagonistic interaction of manganese and aluminum in barley. Journal of Plant Nutrition, 2019, 42, 466-476.	1.9	8
18	GWAS and transcriptomic integrating analysis reveals key salt-responding genes controlling Na+content in barley roots. Plant Physiology and Biochemistry, 2021, 167, 596-606.	5.8	8

#	Article	IF	CITATIONS
19	Identification of microRNAs Responding to Aluminium, Cadmium and Salt Stresses in Barley Roots. Plants, 2021, 10, 2754.	3.5	4