
Michael Aschner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3649826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlgck 1 4.3	0 Tf 50 742 T
2	Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicological Sciences, 2008, 106, 5-28.	1.4	832
3	Nutritional aspects of manganese homeostasis. Molecular Aspects of Medicine, 2005, 26, 353-362.	2.7	683
4	Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicology and Applied Pharmacology, 2007, 221, 131-147.	1.3	527
5	Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochemistry International, 2013, 62, 575-594.	1.9	439
6	Manganese Neurotoxicity. Annals of the New York Academy of Sciences, 2004, 1012, 115-128.	1.8	432
7	Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicology and Applied Pharmacology, 2003, 192, 1-11.	1.3	417
8	Manganese Is Essential for Neuronal Health. Annual Review of Nutrition, 2015, 35, 71-108.	4.3	392
9	Mechanisms of methylmercury-induced neurotoxicity: Evidence from experimental studies. Life Sciences, 2011, 89, 555-563.	2.0	349
10	Manganese metabolism in humans. Frontiers in Bioscience - Landmark, 2018, 23, 1655-1679.	3.0	340
11	Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). International Journal of Molecular Medicine, 2020, 46, 17-26.	1.8	312
12	Role of manganese in neurodegenerative diseases. Journal of Trace Elements in Medicine and Biology, 2011, 25, 191-203.	1.5	311
13	Mercury neurotoxicity: Mechanisms of blood-brain barrier transport. Neuroscience and Biobehavioral Reviews, 1990, 14, 169-176.	2.9	303
14	DEVELOPMENTALNEUROPATHOLOGY OFENVIRONMENTALAGENTS. Annual Review of Pharmacology and Toxicology, 2004, 44, 87-110.	4.2	294
15	Manganese Dosimetry: Species Differences and Implications for Neurotoxicity. Critical Reviews in Toxicology, 2005, 35, 1-32.	1.9	277
16	Oxidative stress in MeHg-induced neurotoxicity. Toxicology and Applied Pharmacology, 2011, 256, 405-417.	1.3	270
17	Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and Distinguishable Features. International Journal of Environmental Research and Public Health, 2015, 12, 7519-7540.	1.2	263
18	Manganese and its Role in Parkinson's Disease: From Transport to Neuropathology. NeuroMolecular Medicine, 2009, 11, 252-266.	1.8	258

#	Article	IF	CITATIONS
19	Manganese neurotoxicity: Cellular effects and blood-brain barrier transport. Neuroscience and Biobehavioral Reviews, 1991, 15, 333-340.	2.9	253
20	Manganese neurotoxicity and the role of reactive oxygen species. Free Radical Biology and Medicine, 2013, 62, 65-75.	1.3	249
21	Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Brazilian Journal of Medical and Biological Research, 2007, 40, 285-291.	0.7	243
22	"Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies― BMC Pharmacology & Toxicology, 2016, 17, 57.	1.0	243
23	Neuroprotective Effects of Quercetin in Alzheimer's Disease. Biomolecules, 2020, 10, 59.	1.8	238
24	The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology, 2019, 161, 107559.	2.0	230
25	Manganese homeostasis in the nervous system. Journal of Neurochemistry, 2015, 134, 601-610.	2.1	222
26	Roles of glutamine in neurotransmission. Neuron Clia Biology, 2010, 6, 263-276.	2.0	211
27	Methylmercury alters glutamate transport in astrocytes. Neurochemistry International, 2000, 37, 199-206.	1.9	209
28	Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicology and Applied Pharmacology, 2009, 240, 219-225.	1.3	209
29	Manganese neurotoxicity: A focus on the neonate. , 2007, 113, 369-377.		207
30	Manganese transport in eukaryotes: The role of DMT1. NeuroToxicology, 2008, 29, 569-576.	1.4	207
31	Manganese neurotoxicity and glutamate-GABA interaction. Neurochemistry International, 2003, 43, 475-480.	1.9	199
32	Manganese (Mn) transport across the rat blood-brain barrier: Saturable and transferrin-dependent transport mechanisms. Brain Research Bulletin, 1994, 33, 345-349.	1.4	198
33	Manganese in Health and Disease. Metal lons in Life Sciences, 2013, 13, 199-227.	2.8	196
34	Manganese Uptake and Efflux in Cultured Rat Astrocytes. Journal of Neurochemistry, 1992, 58, 730-735.	2.1	191
35	Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicology and Applied Pharmacology, 2008, 227, 147-154.	1.3	191
36	Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environmental Toxicology and Pharmacology, 2005, 19, 415-421.	2.0	189

#	Article	IF	CITATIONS
37	Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicology Reports, 2017, 4, 245-259.	1.6	185
38	The functional significance of brain metallothioneins. FASEB Journal, 1996, 10, 1129-1136.	0.2	179
39	GLIAL CELLS IN NEUROTOXICITY DEVELOPMENT. Annual Review of Pharmacology and Toxicology, 1999, 39, 151-173.	4.2	176
40	A new threat from an old enemy: Re‑emergence of coronavirus (Review). International Journal of Molecular Medicine, 2020, 45, 1631-1643.	1.8	175
41	SLC30A10 Is a Cell Surface-Localized Manganese Efflux Transporter, and Parkinsonism-Causing Mutations Block Its Intracellular Trafficking and Efflux Activity. Journal of Neuroscience, 2014, 34, 14079-14095.	1.7	174
42	Metals and Neurodegeneration. F1000Research, 2016, 5, 366.	0.8	172
43	Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. NeuroToxicology, 2006, 27, 492-500.	1.4	171
44	Sulfhydryl groups as targets of mercury toxicity. Coordination Chemistry Reviews, 2020, 417, 213343.	9.5	168
45	Extracellular Dopamine Potentiates Mn-Induced Oxidative Stress, Lifespan Reduction, and Dopaminergic Neurodegeneration in a BLI-3–Dependent Manner in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1001084.	1.5	166
46	The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy, 2017, 13, 914-927.	4.3	165
47	Manganese Induces Oxidative Impairment in Cultured Rat Astrocytes. Toxicological Sciences, 2007, 98, 198-205.	1.4	164
48	Brain manganese and the balance between essential roles and neurotoxicity. Journal of Biological Chemistry, 2020, 295, 6312-6329.	1.6	164
49	Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Research, 2007, 1131, 1-10.	1.1	163
50	Speciation of manganese in cells and mitochondria: A search for the proximal cause of manganese neurotoxicity. NeuroToxicology, 2006, 27, 765-776.	1.4	160
51	Cellular transport and homeostasis of essential and nonessential metals. Metallomics, 2012, 4, 593.	1.0	160
52	Manganese Accumulates in Iron-Deficient Rat Brain Regions in a Heterogeneous Fashion and Is Associated with Neurochemical Alterations. Biological Trace Element Research, 2002, 87, 143-156.	1.9	155
53	Polyphenols in the treatment of autoimmune diseases. Autoimmunity Reviews, 2019, 18, 647-657.	2.5	155
54	The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience, 2016, 319, 155-167.	1.1	148

#	Article	IF	CITATIONS
55	Biomarkers of mercury toxicity: Past, present, and future trends. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2017, 20, 119-154.	2.9	147
56	Manganese: brain transport and emerging research needs Environmental Health Perspectives, 2000, 108, 429-432.	2.8	137
57	The effects of manganese on glutamate, dopamine and γ-aminobutyric acid regulation. Neurochemistry International, 2006, 48, 426-433.	1.9	137
58	Ferroportin is a manganeseâ€responsive protein that decreases manganese cytotoxicity and accumulation. Journal of Neurochemistry, 2010, 112, 1190-1198.	2.1	132
59	Methylmercury and brain development: A review of recent literature. Journal of Trace Elements in Medicine and Biology, 2016, 38, 99-107.	1.5	132
60	Uptake of methylmercury in the rat brain: effects of amino acids. Brain Research, 1988, 462, 31-39.	1.1	131
61	<i>In Vivo</i> Measurement of Brain GABA Concentrations by Magnetic Resonance Spectroscopy in Smelters Occupationally Exposed to Manganese. Environmental Health Perspectives, 2011, 119, 219-224.	2.8	130
62	A Review of the Alleged Health Hazards of Monosodium Glutamate. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1111-1134.	5.9	130
63	The methylmercuryâ€ <scp>l</scp> â€cysteine conjugate is a substrate for the Lâ€type large neutral amino acid transporter. Journal of Neurochemistry, 2008, 107, 1083-1090.	2.1	129
64	Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Molecular Brain Research, 2003, 110, 85-91.	2.5	126
65	Estrogen and tamoxifen reverse manganeseâ€induced glutamate transporter impairment in astrocytes. Journal of Neurochemistry, 2009, 110, 530-544.	2.1	126
66	Manganese (Mn) and Iron (Fe): Interdependency of Transport and Regulation. Neurotoxicity Research, 2010, 18, 124-131.	1.3	126
67	Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Molecular Brain Research, 2005, 137, 11-22.	2.5	122
68	Neurotoxicity of metals. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 131, 169-189.	1.0	120
69	Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics, 2017, 9, 1703-1734.	1.0	119
70	Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Research, 2008, 1203, 1-11.	1.1	118
71	SARS-CoV-2 pathophysiology and its clinical implications: An integrative overview of the pharmacotherapeutic management of COVID-19. Food and Chemical Toxicology, 2020, 146, 111769.	1.8	117
72	Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Research Bulletin, 2009, 79, 77-84.	1.4	116

#	Article	IF	CITATIONS
73	Pathophysiology of manganese-associated neurotoxicity. NeuroToxicology, 2012, 33, 881-886.	1.4	115
74	Manganese-Induced Dopaminergic Neurodegeneration: Insights into Mechanisms and Genetics Shared with Parkinson's Disease. Chemical Reviews, 2009, 109, 4862-4884.	23.0	114
75	Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: Evidence for methylmercury-targeted disruption of astrocyte transport. Journal of Neuroscience Research, 2001, 66, 998-1002.	1.3	111
76	Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. International Journal of Molecular Sciences, 2020, 21, 5622.	1.8	109
77	Manganese Causes Differential Regulation of Glutamate Transporter (GLAST) Taurine Transporter and Metallothionein in Cultured Rat Astrocytes. NeuroToxicology, 2002, 23, 595-602.	1.4	108
78	Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. Journal of Neurochemistry, 2009, 110, 378-389.	2.1	108
79	Multiple organ injury in male C57BL/6J mice exposed to ambient particulate matter in a real-ambient PM exposure system in Shijiazhuang, China. Environmental Pollution, 2019, 248, 874-887.	3.7	108
80	An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regulatory Toxicology and Pharmacology, 2020, 112, 104592.	1.3	108
81	Manganese Inhalation by Rhesus Monkeys is Associated with Brain Regional Changes in Biomarkers of Neurotoxicity. Toxicological Sciences, 2007, 97, 459-466.	1.4	107
82	Neurotoxicity of Metal Mixtures. Advances in Neurobiology, 2017, 18, 227-265.	1.3	104
83	Cancer-associated stroke: Pathophysiology, detection and management (Review). International Journal of Oncology, 2019, 54, 779-796.	1.4	104
84	COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food and Chemical Toxicology, 2020, 141, 111418.	1.8	103
85	The uptake of cysteine in cultured primary astrocytes and neurons. Brain Research, 2001, 902, 156-163.	1.1	102
86	Methylmercury-induced alterations in excitatory amino acid transport in rat primary astrocyte cultures. Brain Research, 1993, 602, 181-186.	1.1	101
87	Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Molecular Brain Research, 2004, 128, 48-57.	2.5	99
88	Methylmercury Induces Acute Oxidative Stress, Altering Nrf2 Protein Level in Primary Microglial Cells. Toxicological Sciences, 2010, 116, 590-603.	1.4	99
89	Redox toxicology of environmental chemicals causing oxidative stress. Redox Biology, 2020, 34, 101475.	3.9	99
90	Protection of DFP-induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist. Toxicology and Applied Pharmacology, 2009, 240, 124-131.	1.3	98

#	Article	IF	CITATIONS
91	Basal ganglia intensity indices and diffusion weighted imaging in manganese-exposed welders. Occupational and Environmental Medicine, 2012, 69, 437-443.	1.3	98
92	Manganese toxicity in the central nervous system: the glutamine/glutamateâ€Î³â€aminobutyric acid cycle. Journal of Internal Medicine, 2013, 273, 466-477.	2.7	98
93	Iron Deficient and Manganese Supplemented Diets Alter Metals and Transporters in the Developing Rat Brain. Toxicological Sciences, 2007, 95, 205-214.	1.4	97
94	Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Research, 2001, 894, 131-140.	1.1	96
95	A Manganese-Enhanced Diet Alters Brain Metals and Transporters in the Developing Rat. Toxicological Sciences, 2006, 92, 516-525.	1.4	96
96	Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 49-74.	0.9	94
97	Changes in Dietary Iron Exacerbate Regional Brain Manganese Accumulation as Determined by Magnetic Resonance Imaging. Toxicological Sciences, 2011, 120, 146-153.	1.4	93
98	The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology, 2012, 292, 90-98.	2.0	93
99	Is Triclosan a neurotoxic agent?. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2017, 20, 104-117.	2.9	92
100	Hormetic Neurobehavioral effects of low dose toxic chemical mixtures in real-life risk simulation (RLRS) in rats. Food and Chemical Toxicology, 2019, 125, 141-149.	1.8	92
101	Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia, 2011, 59, 810-820.	2.5	91
102	Considerations on manganese (Mn) treatments for in vitro studies. NeuroToxicology, 2014, 41, 141-142.	1.4	91
103	Autophagy in Neurodegenerative Diseases and Metal Neurotoxicity. Neurochemical Research, 2016, 41, 409-422.	1.6	90
104	Methylmercury uptake in rat primary astrocyte cultures: the role of the neutral amino acid transport system. Brain Research, 1990, 521, 221-228.	1.1	89
105	Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. NeuroToxicology, 2006, 27, 125-130.	1.4	89
106	Effects of manganese on thyroid hormone homeostasis: Potential links. NeuroToxicology, 2007, 28, 951-956.	1.4	89
107	Methylmercury-mediated inhibition of 3H-d-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Research, 2001, 902, 92-100.	1.1	87
108	Astrocyte Modulation of Neurotoxic Injury. Brain Pathology, 2002, 12, 475-481.	2.1	87

#	Article	IF	CITATIONS
109	Glutathione antioxidant system and methylmercury-induced neurotoxicity: An intriguing interplay. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129285.	1.1	87
110	C. elegans as a model in developmental neurotoxicology. Toxicology and Applied Pharmacology, 2018, 354, 126-135.	1.3	86
111	The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of α-synuclein in C. elegans. Metallomics, 2014, 6, 476-490.	1.0	85
112	Manganese-Induced Cytotoxicity in Dopamine-Producing Cells. NeuroToxicology, 2004, 25, 543-553.	1.4	83
113	Methylmercury Toxicity and Nrf2-dependent Detoxification in Astrocytes. Toxicological Sciences, 2009, 107, 135-143.	1.4	83
114	Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury. Toxicology and Applied Pharmacology, 2011, 256, 219-226.	1.3	82
115	Role of astrocytes in manganese mediated neurotoxicity. BMC Pharmacology & Toxicology, 2013, 14, 23.	1.0	81
116	SMF-1, SMF-2 and SMF-3 DMT1 Orthologues Regulate and Are Regulated Differentially by Manganese Levels in C. elegans. PLoS ONE, 2009, 4, e7792.	1.1	80
117	Manganese transport via the transferrin mechanism. NeuroToxicology, 2013, 34, 118-127.	1.4	80
118	Yin Yang 1 Is a Repressor of Glutamate Transporter EAAT2, and It Mediates Manganese-Induced Decrease of EAAT2 Expression in Astrocytes. Molecular and Cellular Biology, 2014, 34, 1280-1289.	1.1	80
119	Astrocytic Oxidative/Nitrosative Stress Contributes to Parkinson's Disease Pathogenesis: The Dual Role of Reactive Astrocytes. Antioxidants, 2019, 8, 265.	2.2	80
120	Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicology Letters, 2020, 323, 35-40.	0.4	80
121	Improved strategies to counter the COVID-19 pandemic: Lockdowns vs. primary and community healthcare. Toxicology Reports, 2021, 8, 1-9.	1.6	80
122	Manganese exposure among smelting workers: blood manganese–iron ratio as a novel tool for manganese exposure assessment. Biomarkers, 2009, 14, 3-16.	0.9	79
123	Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen. NeuroToxicology, 2011, 32, 291-299.	1.4	79
124	Methylmercury's chemistry: From the environment to the mammalian brain. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129284.	1.1	78
125	Modulation of cholinergic systems by manganese. NeuroToxicology, 2007, 28, 1003-1014.	1.4	77
126	Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Archives of Toxicology, 2013, 87, 1231-1244.	1.9	76

#	Article	IF	CITATIONS
127	Manganese-induced oxidative DNA damage in neuronal SH-SY5Y cells: Attenuation of thymine base lesions by glutathione and N-acetylcysteine. Toxicology Letters, 2013, 218, 299-307.	0.4	76
128	Methyl Mercury Uptake Across Bovine Brain Capillary Endothelial Cells <i>in Vitro:</i> The Role of Amino Acids. Basic and Clinical Pharmacology and Toxicology, 1989, 64, 293-297.	0.0	75
129	Estrogen and Tamoxifen Protect against Mn-Induced Toxicity in Rat Cortical Primary Cultures of Neurons and Astrocytes. Toxicological Sciences, 2009, 110, 156-167.	1.4	75
130	In Vivo Manganese Exposure Modulates Erk, Akt and Darpp-32 in the Striatum of Developing Rats, and Impairs Their Motor Function. PLoS ONE, 2012, 7, e33057.	1.1	75
131	The Role of Autophagy Dysregulation in Manganese-Induced Dopaminergic Neurodegeneration. Neurotoxicity Research, 2013, 24, 478-490.	1.3	75
132	Genetic factors and manganese-induced neurotoxicity. Frontiers in Genetics, 2014, 5, 265.	1.1	75
133	Interactions of methylmercury with rat primary astrocyte cultures: inhibition of rubidium and glutamate uptake and induction of swelling. Brain Research, 1990, 530, 245-250.	1.1	74
134	Manganese. Advances in Nutrition, 2017, 8, 520-521.	2.9	73
135	Hypoxiaâ€Inducible Exosomes Facilitate Liverâ€Tropic Premetastatic Niche in Colorectal Cancer. Hepatology, 2021, 74, 2633-2651.	3.6	73
136	The Consequences of Methylmercury Exposure on Interactive Functions between Astrocytes and Neurons. NeuroToxicology, 2002, 23, 755-759.	1.4	71
137	Targeted Metabolomic Analysis of Serum Fatty Acids for the Prediction of Autoimmune Diseases. Frontiers in Molecular Biosciences, 2019, 6, 120.	1.6	71
138	Therapeutic potential of naringin in neurological disorders. Food and Chemical Toxicology, 2019, 132, 110646.	1.8	71
139	Manganese. Toxicological Reviews, 2006, 25, 147-154.	2.5	70
140	Measuring Brain Manganese and Iron Accumulation in Rats following 14 Weeks of Low-Dose Manganese Treatment Using Atomic Absorption Spectroscopy and Magnetic Resonance Imaging. Toxicological Sciences, 2008, 103, 116-124.	1.4	70
141	Manganese disrupts astrocyte glutamine transporter expression and function. Journal of Neurochemistry, 2009, 110, 822-830.	2.1	70
142	Cellular manganese content is developmentally regulated in human dopaminergic neurons. Scientific Reports, 2014, 4, 6801.	1.6	70
143	MALAT1 rs664589 Polymorphism Inhibits Binding to miR-194-5p, Contributing to Colorectal Cancer Risk, Growth, and Metastasis. Cancer Research, 2019, 79, 5432-5441.	0.4	70
144	Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy, 2020, 16, 1506-1523.	4.3	70

#	Article	IF	CITATIONS
145	Neuronal oxidative injury and dendritic damage induced by carbofuran: Protection by memantine. Toxicology and Applied Pharmacology, 2007, 219, 97-105.	1.3	69
146	Duration of airborne-manganese exposure in rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. NeuroToxicology, 2008, 29, 377-385.	1.4	69
147	Mitochondrial Redox Dysfunction and Environmental Exposures. Antioxidants and Redox Signaling, 2015, 23, 578-595.	2.5	69
148	The use of magnetic resonance imaging (MRI) in the study of manganese neurotoxicity. NeuroToxicology, 2006, 27, 798-806.	1.4	68
149	SLC30A10 transporter in the digestive system regulates brain manganese under basal conditions while brain SLC30A10 protects against neurotoxicity. Journal of Biological Chemistry, 2019, 294, 1860-1876.	1.6	68
150	Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. International Journal of Molecular Sciences, 2021, 22, 4646.	1.8	68
151	Intracellular glutathione (GSH) levels modulate mercuric chloride (MC)- and methylmercuric chloride (MeHgCl)-induced amino acid release from neonatal rat primary astrocytes cultures. Brain Research, 1994, 664, 133-140.	1.1	66
152	Characterization of the effects of methylmercury on Caenorhabditis elegans. Toxicology and Applied Pharmacology, 2009, 240, 265-272.	1.3	66
153	A Possible Neuroprotective Action of a Vinylic Telluride against Mn-Induced Neurotoxicity. Toxicological Sciences, 2010, 115, 194-201.	1.4	66
154	Oxidative Stress in Methylmercury-Induced Cell Toxicity. Toxics, 2018, 6, 47.	1.6	66
155	Oxidative Stress Is Induced in the Rat Brain Following Repeated Inhalation Exposure to Manganese Sulfate. Biological Trace Element Research, 2003, 93, 113-126.	1.9	65
156	The effects of manganese overexposure on brain health. Neurochemistry International, 2020, 135, 104688.	1.9	65
157	Manganese in the Diet: Bioaccessibility, Adequate Intake, and Neurotoxicological Effects. Journal of Agricultural and Food Chemistry, 2020, 68, 12893-12903.	2.4	65
158	Pivotal Role of TGF-β/Smad Signaling in Cardiac Fibrosis: Non-coding RNAs as Effectual Players. Frontiers in Cardiovascular Medicine, 2020, 7, 588347.	1.1	65
159	Methylmercury. Therapeutic Drug Monitoring, 2005, 27, 278-283.	1.0	64
160	Diseaseâ€ŧoxicant screen reveals a neuroprotective interaction between Huntington's disease and manganese exposure. Journal of Neurochemistry, 2010, 112, 227-237.	2.1	64
161	Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice. Brain Research Bulletin, 2012, 87, 74-79.	1.4	64
162	Methods for the Detection of Autophagy in Mammalian Cells. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2016, 69, 20.12.1-20.12.26.	1.1	64

#	Article	IF	CITATIONS
163	Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: Involvement of oxidative stress and glutamatergic system. Toxicology in Vitro, 2009, 23, 302-307.	1.1	63
164	Organotellurium and organoselenium compounds attenuate Mn-induced toxicity in Caenorhabditis elegans by preventing oxidative stress. Free Radical Biology and Medicine, 2012, 52, 1903-1910.	1.3	63
165	Metal-induced neurodegeneration in C. elegans. Frontiers in Aging Neuroscience, 2013, 5, 18.	1.7	63
166	Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice. Journal of Biological Chemistry, 2017, 292, 9760-9773.	1.6	63
167	Glia and Methylmercury Neurotoxicity. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 1091-1101.	1.1	62
168	Lead, Arsenic, and Manganese Metal Mixture Exposures: Focus on Biomarkers of Effect. Biological Trace Element Research, 2015, 166, 13-23.	1.9	62
169	Manganese: Brain Transport and Emerging Research Needs. Environmental Health Perspectives, 2000, 108, 429.	2.8	61
170	Neonatal Rat Primary Microglia: Isolation, Culturing, and Selected Applications. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2010, 43, Unit 12.17.	1.1	61
171	Manganese Neurotoxicity: a Focus on Glutamate Transporters. Annals of Occupational and Environmental Medicine, 2013, 25, 4.	0.3	61
172	Manganese in human parenteral nutrition: Considerations for toxicity and biomonitoring. NeuroToxicology, 2014, 43, 36-45.	1.4	61
173	Transforming growth factorâ€Î± mediates estrogenâ€induced upregulation of glutamate transporter GLTâ€1 in rat primary astrocytes. Glia, 2012, 60, 1024-1036.	2.5	60
174	Serum Zinc, Copper, and Other Biometals Are Associated with COVID-19 Severity Markers. Metabolites, 2021, 11, 244.	1.3	60
175	Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer's disease: Limitations, and current and future perspectives. Journal of Trace Elements in Medicine and Biology, 2021, 67, 126779.	1.5	60
176	The <i>Caenorhabiditis elegans</i> model as a reliable tool in neurotoxicology. Human and Experimental Toxicology, 2012, 31, 236-243.	1.1	59
177	Anthocyanin-Rich AçaÃ-(<i>Euterpe oleracea</i> Mart.) Extract Attenuates Manganese-Induced Oxidative Stress in Rat Primary Astrocyte Cultures. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 390-404.	1.1	59
178	Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food and Chemical Toxicology, 2020, 146, 111809.	1.8	59
179	Metallothioneins: Mercury Species-Specific Induction and Their Potential Role in Attenuating Neurotoxicity. Experimental Biology and Medicine, 2006, 231, 1468-1473.	1.1	58
180	A novel manganese-dependent ATM-p53 signaling pathway is selectively impaired in patient-based neuroprogenitor and murine striatal models of Huntington's disease. Human Molecular Genetics, 2015, 24, 1929-1944.	1.4	58

#	Article	IF	CITATIONS
181	Manganese-induced neurotoxicity: from <i>C. elegans</i> to humans. Toxicology Research, 2015, 4, 191-202.	0.9	58
182	New Insights on the Role of Manganese in Alzheimer's Disease and Parkinson's Disease. International Journal of Environmental Research and Public Health, 2019, 16, 3546.	1.2	58
183	Curcumin pretreatment protects against acute acrylonitrile-induced oxidative damage in rats. Toxicology, 2010, 267, 140-146.	2.0	57
184	Astrocytic functions and physiological reactions to injury: the potential to induce and/or exacerbate neuronal dysfunctiona forum position paper. NeuroToxicology, 1998, 19, 7-17; discussion 37-8.	1.4	57
185	Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter. Environmental Toxicology and Pharmacology, 2005, 20, 390-394.	2.0	56
186	Manganese Homeostasis and Transport. Metal lons in Life Sciences, 2013, 12, 169-201.	2.8	56
187	Structural Elements in the Transmembrane and Cytoplasmic Domains of the Metal Transporter SLC30A10 Are Required for Its Manganese Efflux Activity. Journal of Biological Chemistry, 2016, 291, 15940-15957.	1.6	56
188	Taurine ameliorates particulate matter-induced emphysema by switching on mitochondrial NADH dehydrogenase genes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9655-E9664.	3.3	56
189	Developmental Neurotoxicity of Lead. Advances in Neurobiology, 2017, 18, 3-12.	1.3	56
190	Microglia Activation and Gene Expression Alteration of Neurotrophins in the Hippocampus Following Early-Life Exposure to E-Cigarette Aerosols in a Murine Model. Toxicological Sciences, 2018, 162, 276-286.	1.4	56
191	Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress. Toxicology, 2007, 230, 164-177.	2.0	55
192	Complex Methylmercury–Cysteine Alters Mercury Accumulation in Different Tissues of Mice. Basic and Clinical Pharmacology and Toxicology, 2010, 107, 789-792.	1.2	55
193	Exposure, epidemiology, and mechanism of the environmental toxicant manganese. Environmental Science and Pollution Research, 2016, 23, 13802-13810.	2.7	55
194	Genistein alleviates lead-induced neurotoxicity in vitro and in vivo : Involvement of multiple signaling pathways. NeuroToxicology, 2016, 53, 153-164.	1.4	55
195	Chemical Speciation of Selenium and Mercury as Determinant of Their Neurotoxicity. Advances in Neurobiology, 2017, 18, 53-83.	1.3	55
196	Curcumin attenuates copper-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Toxicology Reports, 2020, 7, 261-268.	1.6	55
197	Transcriptional Regulation of the Astrocytic Excitatory Amino Acid Transporter 1 (EAAT1) via NF-κB and Yin Yang 1 (YY1). Journal of Biological Chemistry, 2015, 290, 23725-23737.	1.6	54
198	Neurotoxicity of e-cigarettes. Food and Chemical Toxicology, 2020, 138, 111245.	1.8	54

#	Article	IF	CITATIONS
199	<i>Caenorhabditis elegans</i> as a tool for environmental risk assessment: emerging and promising applications for a "nobelized worm― Critical Reviews in Toxicology, 2019, 49, 411-429.	1.9	53
200	Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases. Biomedicine and Pharmacotherapy, 2022, 145, 112179.	2.5	53
201	Glutamate/Aspartate Transporter (GLAST), Taurine Transporter and Metallothionein mRNA Levels are Differentially Altered in Astrocytes Exposed to Manganese Chloride, Manganese Phosphate or Manganese Sulfate. NeuroToxicology, 2002, 23, 281-288.	1.4	52
202	Altered Manganese Homeostasis and Manganese Toxicity in a Huntington's Disease Striatal Cell Model Are Not Explained by Defects in the Iron Transport System. Toxicological Sciences, 2010, 117, 169-179.	1.4	52
203	Activation of autophagic flux and the Nrf2/ARE signaling pathway by hydrogen sulfide protects against acrylonitrile-induced neurotoxicity in primary rat astrocytes. Archives of Toxicology, 2018, 92, 2093-2108.	1.9	51
204	The use of astrocytes in culture as model systems for evaluating neurotoxic-induced-injury. NeuroToxicology, 1991, 12, 505-17.	1.4	51
205	Disparity in Risk Factor Severity for Early Childhood Blood Lead among Predominantly African-American Black Children: The 1999 to 2010 US NHANES. International Journal of Environmental Research and Public Health, 2020, 17, 1552.	1.2	50
206	Progression of neurodegeneration and morphologic changes in the brains of juvenile mice with selenoprotein P deleted. Brain Research, 2011, 1398, 1-12.	1.1	49
207	Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition. American Journal of Clinical Nutrition, 2015, 102, 1482-1489.	2.2	49
208	The Role of MicroRNAs in Patients with Amyotrophic Lateral Sclerosis. Journal of Molecular Neuroscience, 2018, 66, 617-628.	1.1	49
209	LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. PLoS ONE, 2019, 14, e0210248.	1.1	49
210	Nicotine and the nicotinic cholinergic system in COVIDâ€19. FEBS Journal, 2020, 287, 3656-3663.	2.2	49
211	Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson's disease. Metallomics, 2015, 7, 289-298.	1.0	48
212	Methylmercury-Induced Neurotoxicity: Focus on Pro-oxidative Events and Related Consequences. Advances in Neurobiology, 2017, 18, 267-286.	1.3	48
213	Nrf2 a molecular therapeutic target for Astaxanthin. Biomedicine and Pharmacotherapy, 2021, 137, 111374.	2.5	48
214	Mitotic arrest in the developing CNS after prenatal exposure to methylmercury. Neurobehavioral Toxicology and Teratology, 1984, 6, 379-85.	0.3	48
215	The aging brain: impact of heavy metal neurotoxicity. Critical Reviews in Toxicology, 2020, 50, 801-814.	1.9	47
216	Hypothyroidism induced by loss of the manganese efflux transporter SLC30A10 may be explained by reduced thyroxine production. Journal of Biological Chemistry, 2017, 292, 16605-16615.	1.6	46

#	Article	IF	CITATIONS
217	Molecular Pathways Associated With Methylmercury-Induced Nrf2 Modulation. Frontiers in Genetics, 2018, 9, 373.	1.1	46
218	Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and α-synuclein. Journal of Trace Elements in Medicine and Biology, 2018, 50, 16-23.	1.5	46
219	Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: Involvement of the dopamine transporter. Toxicology Reports, 2019, 6, 833-840.	1.6	46
220	Metallothionein (MT) isoforms in the central nervous system (CNS): regional and cell-specific distribution and potential functions as an antioxidant. NeuroToxicology, 1998, 19, 653-60.	1.4	46
221	Distribution of mercury 203 in pregnant rats and their fetuses following systemic infusions with thiol-containing amino acids and glutathione during late gestation. Teratology, 1988, 38, 145-155.	1.7	45
222	Effects of inhaled manganese on biomarkers of oxidative stress in the rat brain. NeuroToxicology, 2006, 27, 788-797.	1.4	45
223	Disruption of astrocytic glutamine turnover by manganese is mediated by the protein kinase C pathway. Glia, 2011, 59, 1732-1743.	2.5	45
224	Recent Advances in Mercury Research. Current Environmental Health Reports, 2014, 1, 163-171.	3.2	45
225	The interaction between microglia and neural stem/precursor cells. Brain Research Bulletin, 2014, 109, 32-38.	1.4	45
226	Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126638.	1.5	45
227	Curcumin–cisplatin chemotherapy: A novel strategy in promoting chemotherapy efficacy and reducing side effects. Phytotherapy Research, 2021, 35, 6514-6529.	2.8	45
228	CSK-3β, a double-edged sword in Nrf2 regulation: Implications for neurological dysfunction and disease. F1000Research, 2018, 7, 1043.	0.8	45
229	Methylmercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons. Brain Research, 2001, 914, 159-165.	1.1	44
230	The Manganese Health Research Program (MHRP): Status report and future research needs and directions. NeuroToxicology, 2006, 27, 733-736.	1.4	44
231	Oxidative Stress Mechanisms Underlying Parkinson's Disease-Associated Neurodegeneration in C. elegans. International Journal of Molecular Sciences, 2013, 14, 23103-23128.	1.8	44
232	Role of autophagy in methylmercury-induced neurotoxicity in rat primary astrocytes. Archives of Toxicology, 2016, 90, 333-345.	1.9	44
233	Epigenetic influence of environmentally neurotoxic metals. NeuroToxicology, 2020, 81, 51-65.	1.4	44
234	Astrocytes: Targets and mediators of chemicalâ€induced cns injury. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1993, 38, 329-342.	1.1	43

#	Article	IF	CITATIONS
235	Translational Biomarkers of Neurotoxicity: A Health and Environmental Sciences Institute Perspective on the Way Forward. Toxicological Sciences, 2015, 148, 332-340.	1.4	43
236	Developmental exposure to manganese induces lasting motor and cognitive impairment in rats. NeuroToxicology, 2015, 50, 28-37.	1.4	43
237	SLC30A10: A novel manganese transporter. Worm, 2015, 4, e1042648.	1.0	43
238	Selenium species-dependent toxicity, bioavailability and metabolic transformations in <i>Caenorhabditis elegans</i> . Metallomics, 2018, 10, 818-827.	1.0	43
239	Zinc. Advances in Food and Nutrition Research, 2021, 96, 251-310.	1.5	43
240	The transport of manganese across the blood–brain barrier. NeuroToxicology, 2006, 27, 311-314.	1.4	42
241	Mefloquine induces oxidative stress and neurodegeneration in primary rat cortical neurons. NeuroToxicology, 2010, 31, 518-523.	1.4	42
242	Atropa belladonna neurotoxicity: Implications to neurological disorders. Food and Chemical Toxicology, 2018, 116, 346-353.	1.8	42
243	Paraoxonase-1 genetic polymorphisms in organophosphate metabolism. Toxicology, 2019, 411, 24-31.	2.0	42
244	Antioxidants prevent the cytotoxicity of manganese in RBE4 cells. Brain Research, 2008, 1236, 200-205.	1.1	41
245	Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity. Toxicology and Applied Pharmacology, 2012, 258, 394-402.	1.3	41
246	Manganese and aging. NeuroToxicology, 2016, 56, 262-268.	1.4	41
247	Molecular mechanisms of lead neurotoxicity. Advances in Neurotoxicology, 2021, 5, 159-213.	0.7	41
248	Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomedicine and Pharmacotherapy, 2021, 142, 112024.	2.5	41
249	Brain, Kidney and Liver ²⁰³ Hgâ€Methyl Mercury Uptake in the Rat: Relationship to the Neutral Amino Acid Carrier. Basic and Clinical Pharmacology and Toxicology, 1989, 65, 17-20.	0.0	40
250	Astrocytes as Mediators of Methylmercury Neurotoxicity: Effects on D-Aspartate and Serotonin Uptake. Developmental Neuroscience, 1994, 16, 222-231.	1.0	40
251	Activation of MAPK and FoxO by Manganese (Mn) in Rat Neonatal Primary Astrocyte Cultures. PLoS ONE, 2014, 9, e94753.	1.1	40
252	NAD ⁺ Supplementation Attenuates Methylmercury Dopaminergic and Mitochondrial Toxicity in <i>Caenorhabditis Elegans</i> . Toxicological Sciences, 2016, 151, 139-149.	1.4	40

#	Article	IF	CITATIONS
253	From the Cover: Manganese and Rotenone-Induced Oxidative Stress Signatures Differ in iPSC-Derived Human Dopamine Neurons. Toxicological Sciences, 2017, 159, 366-379.	1.4	40
254	Nickel-Induced Developmental Neurotoxicity in C. elegans Includes Cholinergic, Dopaminergic and GABAergic Degeneration, Altered Behaviour, and Increased SKN-1 Activity. Neurotoxicity Research, 2020, 37, 1018-1028.	1.3	40
255	Molecular mechanisms of aluminum neurotoxicity: Update on adverse effects and therapeutic strategies. Advances in Neurotoxicology, 2021, 5, 1-34.	0.7	40
256	Astrocytes as modulators of mercury-induced neurotoxicity. NeuroToxicology, 1996, 17, 663-9.	1.4	40
257	Prolactin is a peripheral marker of manganese neurotoxicity. Brain Research, 2011, 1382, 282-290.	1.1	39
258	Disease-Toxicant Interactions in Manganese Exposed Huntington Disease Mice: Early Changes in Striatal Neuron Morphology and Dopamine Metabolism. PLoS ONE, 2012, 7, e31024.	1.1	39
259	Manganese efflux in Parkinsonism: Insights from newly characterized SLC30A10 mutations. Biochemical and Biophysical Research Communications, 2013, 432, 1-4.	1.0	39
260	Behavioral effects of developmental methylmercury drinking water exposure in rodents. Journal of Trace Elements in Medicine and Biology, 2014, 28, 117-124.	1.5	39
261	Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: Putative mechanism for manganese-induced neurotoxicity. Neurochemistry International, 2015, 88, 53-59.	1.9	39
262	Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: A panel study. Human Brain Mapping, 2017, 38, 3865-3877.	1.9	39
263	Insights into the differential toxicological and antioxidant effects of 4-phenylchalcogenil-7-chloroquinolines in Caenorhabditis elegans. Free Radical Biology and Medicine, 2017, 110, 133-141.	1.3	39
264	The development of a cell-based model for the assessment of carcinogenic potential upon long-term PM2.5 exposure. Environment International, 2019, 131, 104943.	4.8	39
265	Flavonoids targeting NRF2 in neurodegenerative disorders. Food and Chemical Toxicology, 2020, 146, 111817.	1.8	39
266	Manganese Accumulation in the Brain via Various Transporters and Its Neurotoxicity Mechanisms. Molecules, 2020, 25, 5880.	1.7	39
267	Application of novel technologies and mechanistic data for risk assessment under the real-life risk simulation (RLRS) approach. Food and Chemical Toxicology, 2020, 137, 111123.	1.8	39
268	Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities. Frontiers in Oncology, 2021, 11, 650256.	1.3	39
269	Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallomics, 2011, 3, 271.	1.0	38
270	Anti-aging effects of deuterium depletion on Mn-induced toxicity in a C. elegans model. Toxicology Letters, 2012, 211, 319-324.	0.4	38

#	Article	IF	CITATIONS
271	Interactions of trimethyl tin (TMT) with rat primary astrocyte cultures: altered uptake and efflux of rubidium,l-glutamate andD-aspartate. Brain Research, 1992, 582, 181-185.	1.1	37
272	Are Neuropathological Conditions Relevant to Ethylmercury Exposure?. Neurotoxicity Research, 2010, 18, 59-68.	1.3	37
273	Role of matrix metalloproteinase-2/9 (MMP2/9) in lead-induced changes in an <i>in vitro</i> blood-brain barrier model. International Journal of Biological Sciences, 2017, 13, 1351-1360.	2.6	37
274	17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. NeuroToxicology, 2018, 65, 280-288.	1.4	37
275	Molecular Docking of Isolated Alkaloids for Possible α-Glucosidase Inhibition. Biomolecules, 2019, 9, 544.	1.8	37
276	Comparison of the neurotoxicity associated with cobalt nanoparticles and cobalt chloride in Wistar rats. Toxicology and Applied Pharmacology, 2019, 369, 90-99.	1.3	37
277	Iron and manganese-related CNS toxicity: mechanisms, diagnosis and treatment. Expert Review of Neurotherapeutics, 2019, 19, 243-260.	1.4	37
278	10. Manganese: Its Role in Disease and Health. , 2019, 19, 253-266.		37
279	Targeting cell cycle by Î ² -carboline alkaloids in vitro: Novel therapeutic prospects for the treatment of cancer. Chemico-Biological Interactions, 2020, 330, 109229.	1.7	37
280	Mercury and Selenium – A Review on Aspects Related to the Health of Human Populations in the Amazon. Environmental Bioindicators, 2009, 4, 222-245.	0.4	36
281	Mechanisms and modifiers of methylmercury-induced neurotoxicity. Toxicology Research, 2012, 1, 32-38.	0.9	36
282	15-Deoxy-Δ12,14-prostaglandin J2 modulates manganese-induced activation of the NF-κB, Nrf2, and PI3K pathways in astrocytes. Free Radical Biology and Medicine, 2012, 52, 1067-1074.	1.3	36
283	Urinary delta-ALA: A potential biomarker of exposure and neurotoxic effect in rats co-treated with a mixture of lead, arsenic and manganese. NeuroToxicology, 2013, 38, 33-41.	1.4	36
284	Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status. Metallomics, 2015, 7, 363-370.	1.0	36
285	Determination of trace metals in fruit juices in the Portuguese market. Toxicology Reports, 2018, 5, 434-439.	1.6	36
286	Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity. NeuroToxicology, 2018, 67, 112-120.	1.4	36
287	Acute Methylmercury Exposure and the Hypoxia-Inducible Factor-1α Signaling Pathway under Normoxic Conditions in the Rat Brain and Astrocytes <i>in Vitro</i> . Environmental Health Perspectives, 2019, 127, 127006.	2.8	36
288	Post-translational modifications in MeHg-induced neurotoxicity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2068-2081.	1.8	36

#	Article	IF	CITATIONS
289	Assessment of copper, iron, zinc and manganese status and speciation in patients with Parkinson's disease: A pilot study. Journal of Trace Elements in Medicine and Biology, 2020, 59, 126423.	1.5	36
290	Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies. Toxicology Reports, 2020, 7, 637-648.	1.6	36
291	The transcription factor REST up-regulates tyrosine hydroxylase and antiapoptotic genes and protects dopaminergic neurons against manganese toxicity. Journal of Biological Chemistry, 2020, 295, 3040-3054.	1.6	36
292	Activation of NLRP3 in microglia exacerbates diesel exhaust particles-induced impairment in learning and memory in mice. Environment International, 2020, 136, 105487.	4.8	36
293	The In Vitro Uptake of Glutamate in GLAST and GLT-1 Transfected Mutant CHO-K1 Cells Is Inhibited by Manganese. Biological Trace Element Research, 2005, 107, 221-230.	1.9	35
294	Putative proteins involved in manganese transport across the blood-brain barr 1ier. Human and Experimental Toxicology, 2007, 26, 295-302.	1.1	35
295	Genomic Instability Associated with p53 Knockdown in the Generation of Huntington's Disease Human Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0150372.	1.1	35
296	Unmasking silent neurotoxicity following developmental exposure to environmental toxicants. Neurotoxicology and Teratology, 2016, 55, 38-44.	1.2	35
297	Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Review of Neurotherapeutics, 2020, 20, 1109-1121.	1.4	35
298	Parkinson's disease and pesticides: Are microRNAs the missing link?. Science of the Total Environment, 2020, 744, 140591.	3.9	35
299	The impact of manganese on neurotransmitter systems. Journal of Trace Elements in Medicine and Biology, 2020, 61, 126554.	1.5	35
300	Stressed-Induced TMEM135 Protein Is Part of a Conserved Genetic Network Involved in Fat Storage and Longevity Regulation in Caenorhabditis elegans. PLoS ONE, 2010, 5, e14228.	1.1	35
301	Untangling the Manganese-α-Synuclein Web. Frontiers in Neuroscience, 2016, 10, 364.	1.4	34
302	Advanced Glycation End-Products and Their Receptors: Related Pathologies, Recent Therapeutic Strategies, and a Potential Model for Future Neurodegeneration Studies. Chemical Research in Toxicology, 2016, 29, 707-714.	1.7	34
303	Methylmercury augments Nrf2 activity by downregulation of the Src family kinase Fyn. NeuroToxicology, 2017, 62, 200-206.	1.4	34
304	Commonalities between Copper Neurotoxicity and Alzheimer's Disease. Toxics, 2021, 9, 4.	1.6	34
305	Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomedicine and Pharmacotherapy, 2021, 138, 111492.	2.5	34
306	A Chronic Iron-Deficient/High-Manganese Diet in Rodents Results in Increased Brain Oxidative Stress and Behavioral Deficits in the Morris Water Maze. Neurotoxicity Research, 2009, 15, 167-178.	1.3	33

#	Article	IF	CITATIONS
307	Gender and manganese exposure interactions on mouse striatal neuron morphology. NeuroToxicology, 2011, 32, 896-906.	1.4	33
308	The Role of skn-1 in Methylmercury-Induced Latent Dopaminergic Neurodegeneration. Neurochemical Research, 2013, 38, 2650-2660.	1.6	33
309	Brain diseases in changing climate. Environmental Research, 2019, 177, 108637.	3.7	33
310	Role for calcium signaling in manganese neurotoxicity. Journal of Trace Elements in Medicine and Biology, 2019, 56, 146-155.	1.5	33
311	<i>In silico</i> Studies on the Interaction between Mpro and PLpro From SARS oVâ€2 and Ebselen, its Metabolites and Derivatives. Molecular Informatics, 2021, 40, e2100028.	1.4	33
312	Determining the oxidation states of manganese in PC12 and nerve growth factor-induced PC12 cells. Free Radical Biology and Medicine, 2005, 39, 164-181.	1.3	32
313	Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. Journal of Molecular Neuroscience, 2019, 67, 312-342.	1.1	32
314	An updated systematic review on the association between Cd exposure, blood pressure and hypertension. Ecotoxicology and Environmental Safety, 2021, 208, 111636.	2.9	32
315	Gut Microbiota as a Mediator of Essential and Toxic Effects of Zinc in the Intestines and Other Tissues. International Journal of Molecular Sciences, 2021, 22, 13074.	1.8	32
316	Effects of Diphenyl Diselenide on Methylmercury Toxicity in Rats. BioMed Research International, 2013, 2013, 1-12.	0.9	31
317	Genetic Dys-regulation of Astrocytic Glutamate Transporter EAAT2 and its Implications in Neurological Disorders and Manganese Toxicity. Neurochemical Research, 2015, 40, 380-388.	1.6	31
318	Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells. Food and Chemical Toxicology, 2018, 113, 328-336.	1.8	31
319	Sodium P -aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating MAPK and COX-2. NeuroToxicology, 2018, 64, 219-229.	1.4	31
320	Arundic Acid Increases Expression and Function of Astrocytic Glutamate Transporter EAAT1 Via the ERK, Akt, and NF-κB Pathways. Molecular Neurobiology, 2018, 55, 5031-5046.	1.9	31
321	Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology, 2019, 425, 152248.	2.0	31
322	Neurotoxic mechanisms of fish-borne methylmercury. Environmental Toxicology and Pharmacology, 2002, 12, 101-104.	2.0	30
323	Manganeseâ€induced downregulation of astroglial glutamine transporter SNAT3 involves ubiquitinâ€mediated proteolytic system. Clia, 2010, 58, 1905-1912.	2.5	30
324	Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans. Metallomics, 2015, 7, 847-856.	1.0	30

#	Article	IF	CITATIONS
325	Neurotoxicity of manganese: Indications for future research and public health intervention from the Manganese 2016 conference. NeuroToxicology, 2018, 64, 1-4.	1.4	30
326	Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. NeuroToxicology, 2018, 64, 230-239.	1.4	30
327	Anti-Cancer Effects of 3, 3'-Diindolylmethane on Human Hepatocellular Carcinoma Cells Is Enhanced by Calcium Ionophore: The Role of Cytosolic Ca2+ and p38 MAPK. Frontiers in Pharmacology, 2019, 10, 1167.	1.6	30
328	10. MANGANESE: ITS ROLE IN DISEASE AND HEALTH. , 2019, 19, 253-266.		30
329	Nicotine protects against manganese and iron-induced toxicity in SH-SY5Y cells: Implication for Parkinson's disease. Neurochemistry International, 2019, 124, 19-24.	1.9	30
330	The role of posttranslational modifications of α-synuclein and LRRK2 in Parkinson's disease: Potential contributions of environmental factors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1992-2000.	1.8	30
331	Copper, Iron, Selenium and Lipo-Glycemic Dysmetabolism in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 9461.	1.8	30
332	Manganese Neurotoxicity and Oxidative Damage. , 1997, , 77-93.		30
333	Mercury 203 distribution in pregnant and nonpregnant rats following systemic infusions with thiol-containing amino acids. Teratology, 1987, 36, 321-328.	1.7	29
334	Mechanism of Mn(II)â€mediated dysregulation of glutamine–glutamate cycle: focus on glutamate turnover. Journal of Neurochemistry, 2012, 122, 856-867.	2.1	29
335	Seleno- and Telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway. Food and Chemical Toxicology, 2014, 64, 192-199.	1.8	29
336	Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington's disease mouse model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1596-1604.	1.8	29
337	Diphenyl diselenide protects against methylmercuryâ€induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen. Journal of Applied Toxicology, 2017, 37, 1073-1081.	1.4	29
338	Nrf2-regulated miR-380-3p Blocks the Translation of Sp3 Protein and Its Mediation of Paraquat-Induced Toxicity in Mouse Neuroblastoma N2a Cells. Toxicological Sciences, 2019, 171, 515-529.	1.4	29
339	Type 2 diabetes induced oxidative brain injury involves altered cerebellar neuronal integrity and elemental distribution, and exacerbated Nrf2 expression: therapeutic potential of raffia palm (Raphia) Tj ETQq1	1 0 <i>1</i> . 8 4314	l r g@ T /Over
340	Metabolomics analysis explores the rescue to neurobehavioral disorder induced by maternal PM2.5 exposure in mice. Ecotoxicology and Environmental Safety, 2019, 169, 687-695.	2.9	29
341	New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomedicine and Pharmacotherapy, 2021, 140, 111753.	2.5	29
342	Estrogen Attenuates Manganese-Induced Glutamate Transporter Impairment in Rat Primary Astrocytes. Neurotoxicity Research, 2013, 23, 124-130.	1.3	28

#	Article	IF	CITATIONS
343	Phosphatidylinositol 3 kinase (PI3K) modulates manganese homeostasis and manganese-induced cell signaling in a murine striatal cell line. NeuroToxicology, 2018, 64, 185-194.	1.4	28
344	Neurodevelopmental Effects of Mercury. Advances in Neurotoxicology, 2018, 2, 27-86.	0.7	28
345	Smoking and DNA methylation: Correlation of methylation with smoking behavior and association with diseases and fetus development following prenatal exposure. Food and Chemical Toxicology, 2019, 129, 312-327.	1.8	28
346	Hyperglycemia-induced oxidative brain injury: Therapeutic effects of Cola nitida infusion against redox imbalance, cerebellar neuronal insults, and upregulated Nrf2 expression in type 2 diabetic rats. Food and Chemical Toxicology, 2019, 127, 206-217.	1.8	28
347	Astrocyte-specific deletion of the transcription factor Yin Yang 1 in murine substantia nigra mitigates manganese-induced dopaminergic neurotoxicity. Journal of Biological Chemistry, 2020, 295, 15662-15676.	1.6	28
348	Adipotropic effects of heavy metals and their potential role in obesity. Faculty Reviews, 2021, 10, 32.	1.7	28
349	Blood cadmium levels and sources of exposure in an adult urban population in southern Brazil. Environmental Research, 2020, 187, 109618.	3.7	28
350	Ferroptosis as a mechanism of non-ferrous metal toxicity. Archives of Toxicology, 2022, 96, 2391-2417.	1.9	28
351	The neuropathogenesis of mercury toxicity. Molecular Psychiatry, 2002, 7, S40-S41.	4.1	27
352	Effects of developmental manganese, stress, and the combination of both on monoamines, growth, and corticosterone. Toxicology Reports, 2014, 1, 1046-1061.	1.6	27
353	Differential inflammatory response to acrylonitrile in rat primary astrocytes and microglia. NeuroToxicology, 2014, 42, 1-7.	1.4	27
354	Quantification of Glutathione in <i>Caenorhabditis elegans</i> . Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2015, 64, 6.18.1-6.18.6.	1.1	27
355	Neurotoxicity of fragrance compounds: A review. Environmental Research, 2017, 158, 342-349.	3.7	27
356	Suppression of PTPN6 exacerbates aluminum oxide nanoparticle-induced COPD-like lesions in mice through activation of STAT pathway. Particle and Fibre Toxicology, 2017, 14, 53.	2.8	27
357	Application of cell-based biological bioassays for health risk assessment of PM2.5 exposure in three megacities, China. Environment International, 2020, 139, 105703.	4.8	27
358	[Editorial] COVIDâ€ʿ19: Postâ€ʻlockdown guidelines. International Journal of Molecular Medicine, 2020, 46, 463-466.	1.8	27
359	Involvement of striatal lipid peroxidation and inhibition of calcium influx into brain slices in neurobehavioral alterations in a rat model of short-term oral exposure to manganese. NeuroToxicology, 2008, 29, 1062-1068.	1.4	26
360	Protective effects of novel organic selenium compounds against oxidative stress in the nematode Caenorhabditis elegans. Toxicology Reports, 2015, 2, 961-967.	1.6	26

#	Article	IF	CITATIONS
361	Involvement of heat shock proteins on Mn-induced toxicity in Caenorhabditis elegans. BMC Pharmacology & Toxicology, 2016, 17, 54.	1.0	26
362	Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity. Neurotoxicity Research, 2018, 34, 584-596.	1.3	26
363	The under-reported role of toxic substance exposures in the COVID-19 pandemic. Food and Chemical Toxicology, 2020, 145, 111687.	1.8	26
364	Maintaining Translational Relevance in Animal Models of Manganese Neurotoxicity. Journal of Nutrition, 2020, 150, 1360-1369.	1.3	26
365	Null allele mutants of trt-1 , the catalytic subunit of telomerase in Caenorhabditis elegans , are less sensitive to Mn-induced toxicity and DAergic degeneration. NeuroToxicology, 2016, 57, 54-60.	1.4	25
366	Role of Astrocytes in Manganese Neurotoxicity Revisited. Neurochemical Research, 2019, 44, 2449-2459.	1.6	25
367	Methylmercury Epigenetics. Toxics, 2019, 7, 56.	1.6	25
368	Inhibition of ATP citrate lyase (ACLY) protects airway epithelia from PM2.5-induced epithelial-mesenchymal transition. Ecotoxicology and Environmental Safety, 2019, 167, 309-316.	2.9	25
369	Chronic exposure to methylmercury induces puncta formation in cephalic dopaminergic neurons in Caenorhabditis elegans. NeuroToxicology, 2020, 77, 105-113.	1.4	25
370	Signal transduction associated with lead-induced neurological disorders: A review. Food and Chemical Toxicology, 2021, 150, 112063.	1.8	25
371	Impact of environmental toxicants on p38- and ERK-MAPK signaling pathways in the central nervous system. NeuroToxicology, 2021, 86, 166-171.	1.4	25
372	Cobalt induces neurodegenerative damages through Pin1 inactivation in mice and human neuroglioma cells. Journal of Hazardous Materials, 2021, 419, 126378.	6.5	25
373	Overview of the effects of chemical mixtures with endocrine disrupting activity in the context of real‑life risk simulation (RLRS): An integrative approach (Review). World Academy of Sciences Journal, 2019, 1, 157-164.	0.4	25
374	Differential deposition of manganese in the rat brain following subchronic exposure to manganese: a T1-weighted magnetic resonance imaging study. Israel Medical Association Journal, 2008, 10, 793-8.	0.1	25
375	Interactions of methylmercury with rat primary astrocyte cultures: methylmercury efflux. Brain Research, 1991, 554, 10-14.	1.1	24
376	Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase. NeuroToxicology, 2011, 32, 578-585.	1.4	24
377	Considerations on methylmercury (MeHg) treatments in in vitro studies. NeuroToxicology, 2012, 33, 512-513.	1.4	24
378	Manganese Alters Rat Brain Amino Acids Levels. Biological Trace Element Research, 2012, 150, 337-341.	1.9	24

#	Article	IF	CITATIONS
379	Early-Life Exposure to Methylmercury in Wildtype and pdr-1/parkin Knockout C. elegans. Neurochemical Research, 2013, 38, 1543-1552.	1.6	24
380	Dopaminergic neurotoxicity of <i>S</i> â€ethyl <i>N,N</i> â€dipropylthiocarbamate (<scp>EPTC</scp>), molinate, and <i>S</i> â€methylâ€ <i>N,N</i> â€diethylthiocarbamate (Me <scp>DETC</scp>) in <i><scp>C</scp>aenorhabditis elegans</i> . Journal of Neurochemistry, 2013, 127, 837-851.	2.1	24
381	Sex- and structure-specific differences in antioxidant responses to methylmercury during early development. NeuroToxicology, 2016, 56, 118-126.	1.4	24
382	Transcriptional Regulation of Human Transforming Growth Factor-α in Astrocytes. Molecular Neurobiology, 2017, 54, 964-976.	1.9	24
383	Combined exposure to methylmercury and manganese during L1 larval stage causes motor dysfunction, cholinergic and monoaminergic up-regulation and oxidative stress in L4 Caenorhabditis elegans. Toxicology, 2019, 411, 154-162.	2.0	24
384	Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes. Environmental Pollution, 2020, 266, 115326.	3.7	24
385	HER2-specific chimeric antigen receptor-T cells for targeted therapy of metastatic colorectal cancer. Cell Death and Disease, 2021, 12, 1109.	2.7	24
386	The association between environmental cadmium exposure, blood pressure, and hypertension: a systematic review and meta-analysis. Environmental Science and Pollution Research, 2022, 29, 35682-35706.	2.7	24
387	The role of MT in neurological disorders. Journal of Alzheimer's Disease, 2005, 8, 139-145.	1.2	23
388	Environmental Exposure, Obesity, and Parkinson's Disease: Lessons from Fat and Old Worms. Environmental Health Perspectives, 2011, 119, 20-28.	2.8	23
389	Association of exposure to manganese and iron with striatal and thalamic GABA and other neurometabolites — Neuroimaging results from the WELDOX II study. NeuroToxicology, 2018, 64, 60-67.	1.4	23
390	Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+AÎ21-42 peptide in rat hippocampal neurons. Neurochemistry International, 2020, 140, 104817.	1.9	23
391	Does the CD33 rs3865444 Polymorphism Confer Susceptibility to Alzheimer's Disease?. Journal of Molecular Neuroscience, 2020, 70, 851-860.	1.1	23
392	Sirtuins as molecular targets, mediators, and protective agents in metal-induced toxicity. Archives of Toxicology, 2021, 95, 2263-2278.	1.9	23
393	Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. Toxics, 2021, 9, 142.	1.6	23
394	Environmental and health hazards of military metal pollution. Environmental Research, 2021, 201, 111568.	3.7	23
395	In Vitro Uptake of Glutamate in GLAST- and GLT-1-Transfected Mutant CHO-K1 Cells Is Inhibited by the Ethylmercury-Containing Preservative Thimerosal. Biological Trace Element Research, 2005, 105, 071-086.	1.9	22
396	Toxicity Studies on Depleted Uranium in Primary Rat Cortical Neurons and in <i>Caenorhabditis Elegans:</i> What Have We Learned?. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2009, 12, 525-539.	2.9	22

#	Article	IF	CITATIONS
397	Differential response to acrylonitrile toxicity in rat primary astrocytes and microglia. NeuroToxicology, 2013, 37, 93-99.	1.4	22
398	Manganese Acts upon Insulin/IGF Receptors to Phosphorylate AKT and Increase Glucose Uptake in Huntington's Disease Cells. Molecular Neurobiology, 2020, 57, 1570-1593.	1.9	22
399	Caloric restriction attenuates C57BL/6 J mouse lung injury and extra-pulmonary toxicity induced by real ambient particulate matter exposure. Particle and Fibre Toxicology, 2020, 17, 22.	2.8	22
400	Setting safer exposure limits for toxic substance combinations. Food and Chemical Toxicology, 2020, 140, 111346.	1.8	22
401	Novel Pharmacotherapies in Parkinson's Disease. Neurotoxicity Research, 2021, 39, 1381-1390.	1.3	22
402	Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomedicine and Pharmacotherapy, 2021, 142, 112038.	2.5	22
403	Nanoparticles. Progress in Brain Research, 2009, 180, 141-152.	0.9	21
404	Beta 1, Beta 2 and Beta 3 Adrenergic Receptor Gene Polymorphisms in a Southeastern European Population. Frontiers in Genetics, 2018, 9, 560.	1.1	21
405	The role of poly(ADP-ribose) polymerases in manganese exposed Caenorhabditis elegans. Journal of Trace Elements in Medicine and Biology, 2020, 57, 21-27.	1.5	21
406	Manganese-induced Mitochondrial Dysfunction Is Not Detectable at Exposures Below the Acute Cytotoxic Threshold in Neuronal Cell Types. Toxicological Sciences, 2020, 176, 446-459.	1.4	21
407	Gut Microbiota as a Potential Player in Mn-Induced Neurotoxicity. Biomolecules, 2021, 11, 1292.	1.8	21
408	Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7. Aging, 2016, 8, 1759-1780.	1.4	21
409	An Update on the Critical Role of α-Synuclein in Parkinson's Disease and Other Synucleinopathies: from Tissue to Cellular and Molecular Levels. Molecular Neurobiology, 2022, 59, 620-642.	1.9	21
410	The Role of Persistent Organic Pollutants in Obesity: A Review of Laboratory and Epidemiological Studies. Toxics, 2022, 10, 65.	1.6	21
411	Guarana (Paullinia cupana Mart.) attenuates methylmercury-induced toxicity in Caenorhabditis elegans. Toxicology Research, 2016, 5, 1629-1638.	0.9	20
412	Extracellular dopamine and alterations on dopamine transporter are related to reserpine toxicity in Caenorhabditis elegans. Archives of Toxicology, 2016, 90, 633-645.	1.9	20
413	Metals and Circadian Rhythms. Advances in Neurotoxicology, 2017, 1, 119-130.	0.7	20
414	Mercury in Our Food. Chemical Research in Toxicology, 2019, 32, 1459-1461.	1.7	20

#	Article	IF	CITATIONS
415	Defective Mitochondrial Dynamics Underlie Manganese-Induced Neurotoxicity. Molecular Neurobiology, 2021, 58, 3270-3289.	1.9	20
416	lncRNA TUG1 as a ceRNA promotes PM exposure-induced airway hyper-reactivity. Journal of Hazardous Materials, 2021, 416, 125878.	6.5	20
417	Bcl-2 Modulation in p53 Signaling Pathway by Flavonoids: A Potential Strategy towards the Treatment of Cancer. International Journal of Molecular Sciences, 2021, 22, 11315.	1.8	20
418	Blood-Brain Barrier and Cell-Cell Interactions: Methods for Establishing In Vitro Models of the Blood-Brain Barrier and Transport Measurements. , 2006, 341, 1-16.		19
419	Characteristics of manganese (Mn) transport in rat brain endothelial (RBE4) cells, an in vitro model of the blood–brain barrier. NeuroToxicology, 2006, 27, 60-70.	1.4	19
420	Repeated exposure to Ochratoxin A generates a neuroinflammatory response, characterized by neurodegenerative M1 microglial phenotype. NeuroToxicology, 2014, 44, 61-70.	1.4	19
421	Elemental bioimaging of manganese uptake in C. elegans. Metallomics, 2014, 6, 617.	1.0	19
422	Mir-203-mediated tricellulin mediates lead-induced in vitro loss of blood–cerebrospinal fluid barrier (BCB) function. Toxicology in Vitro, 2015, 29, 1185-1194.	1.1	19
423	Behavioral and dopaminergic damage induced by acute iron toxicity in Caenorhabditis elegans. Toxicology Research, 2015, 4, 878-884.	0.9	19
424	Manganese Control of Glutamate Transporters' Gene Expression. Advances in Neurobiology, 2017, 16, 1-12.	1.3	19
425	Huntington's disease associated resistance to Mn neurotoxicity is neurodevelopmental stage and neuronal lineage dependent. NeuroToxicology, 2019, 75, 148-157.	1.4	19
426	Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology, 2021, 38, 66.	1.2	19
427	STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell International, 2021, 21, 468.	1.8	19
428	Role of excretion in manganese homeostasis and neurotoxicity: a historical perspective. American Journal of Physiology - Renal Physiology, 2022, 322, G79-G92.	1.6	19
429	Exposing the role of metals in neurological disorders: a focus on manganese. Trends in Molecular Medicine, 2022, 28, 555-568.	3.5	19
430	Gene–environment interactions: Neurodegeneration in non-mammals and mammals. NeuroToxicology, 2010, 31, 582-588.	1.4	18
431	Lack of association between autism and four heavy metal regulatory genes. NeuroToxicology, 2011, 32, 769-775.	1.4	18
432	Highly sensitive isotope-dilution liquid-chromatography–electrospray ionization–tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans. Talanta, 2015, 144, 71-79.	2.9	18

#	Article	IF	CITATIONS
433	Differential protection of pre- versus post-treatment with curcumin, Trolox, and N -acetylcysteine against acrylonitrile-induced cytotoxicity in primary rat astrocytes. NeuroToxicology, 2015, 51, 58-66.	1.4	18
434	Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation. NeuroToxicology, 2018, 67, 65-72.	1.4	18
435	Quinolinic acid and glutamatergic neurodegeneration in Caenorhabditis elegans. NeuroToxicology, 2018, 67, 94-101.	1.4	18
436	Peumus boldus attenuates copper-induced toxicity in Drosophila melanogaster. Biomedicine and Pharmacotherapy, 2018, 97, 1-8.	2.5	18
437	Biomarkers of exposure and effect in a working population exposed to lead, manganese and arsenic. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 983-997.	1.1	18
438	Acute manganese treatment restores defective autophagic cargo loading in Huntington's disease cell lines. Human Molecular Genetics, 2019, 28, 3825-3841.	1.4	18
439	Bacteria affect Caenorhabditis elegans responses to MeHg toxicity. NeuroToxicology, 2019, 75, 129-135.	1.4	18
440	Comparing the Neuroprotective Effects of Caffeic Acid in Rat Cortical Slices and Caenorhabditis elegans: Involvement of Nrf2 and SKN-1 Signaling Pathways. Neurotoxicity Research, 2020, 37, 326-337.	1.3	18
441	Antimetastatic Effects of Curcumin in Oral and Gastrointestinal Cancers. Frontiers in Pharmacology, 2021, 12, 668567.	1.6	18
442	Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation. Cancer Cell International, 2021, 21, 579.	1.8	18
443	Isolation of Neonatal Rat Cortical Astrocytes for Primary Cultures. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2000, 4, Unit12.4.	1.1	17
444	Evaluation of neurobehavioral and neuroinflammatory end-points in the post-exposure period in rats sub-acutely exposed to manganese. Toxicology, 2013, 314, 95-99.	2.0	17
445	Reversible reprotoxic effects of manganese through DAF-16 transcription factor activation and vitellogenin downregulation in Caenorhabditis elegans. Life Sciences, 2016, 151, 218-223.	2.0	17
446	Mechanisms involved in anti-aging effects of guarana (Paullinia cupana) in Caenorhabditis elegans. Brazilian Journal of Medical and Biological Research, 2018, 51, e7552.	0.7	17
447	High level of methylmercury exposure causes persisted toxicity in Nauphoeta cinerea. Environmental Science and Pollution Research, 2020, 27, 4799-4813.	2.7	17
448	Huntington's disease genotype suppresses global manganese-responsive processes in pre-manifest and manifest YAC128 mice. Metallomics, 2020, 12, 1118-1130.	1.0	17
449	Neurotoxicity of metal mixtures. Advances in Neurotoxicology, 2021, 5, 329-364.	0.7	17
450	Neurotoxicity mechanisms of manganese in the central nervous system. Advances in Neurotoxicology, 2021, 5, 215-238.	0.7	17

#	Article	IF	CITATIONS
451	Mercury and cancer: Where are we now after two decades of research?. Food and Chemical Toxicology, 2022, 164, 113001.	1.8	17
452	Involvement of AAT transporters in methylmercury toxicity in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2013, 435, 546-550.	1.0	16
453	Sodium-Coupled Neutral Amino Acid Transporter 1 (SNAT1) Modulates L-Citrulline Transport and Nitric Oxide (NO) Signaling in Piglet Pulmonary Arterial Endothelial Cells. PLoS ONE, 2014, 9, e85730.	1.1	16
454	Changes in rat urinary porphyrin profiles predict the magnitude of the neurotoxic effects induced by a mixture of lead, arsenic and manganese. NeuroToxicology, 2014, 45, 168-177.	1.4	16
455	Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation. Toxicology and Applied Pharmacology, 2016, 297, 1-11.	1.3	16
456	Blood manganese levels and associated factors in a population-based study in Southern Brazil. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 1064-1077.	1.1	16
457	Methylmercury Affects the Expression of Hypothalamic Neuropeptides That Control Body Weight in C57BL/6J Mice. Toxicological Sciences, 2018, 163, 557-568.	1.4	16
458	Zn homeostasis in genetic models of Parkinson's disease in Caenorhabditis elegans. Journal of Trace Elements in Medicine and Biology, 2019, 55, 44-49.	1.5	16
459	Neurotoxicity of mercury: An old issue with contemporary significance. Advances in Neurotoxicology, 2021, 5, 239-262.	0.7	16
460	Estimated IQ points and lifetime earnings lost to early childhood blood lead levels in the United States. Science of the Total Environment, 2021, 778, 146307.	3.9	16
461	Combination of natural antivirals and potent immune invigorators: A natural remedy to combat <scp>COVID</scp> â€19. Phytotherapy Research, 2021, 35, 6530-6551.	2.8	16
462	Up-regulation of the manganese transporter SLC30A10 by hypoxia-inducible factors defines a homeostatic response to manganese toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
463	Intercellular transfer of mitochondria via tunneling nanotubes protects against cobalt nanoparticle-induced neurotoxicity and mitochondrial damage. Nanotoxicology, 2021, 15, 1358-1379.	1.6	16
464	Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury. Journal of Toxicology, 2011, 2011, 1-9.	1.4	15
465	Ethnic Kawasaki Disease Risk Associated with Blood Mercury and Cadmium in U.S. Children. International Journal of Environmental Research and Public Health, 2016, 13, 101.	1.2	15
466	Disease-Toxicant Interactions in Parkinson's Disease Neuropathology. Neurochemical Research, 2017, 42, 1772-1786.	1.6	15
467	DR4 mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus. International Journal of Cancer, 2018, 143, 289-297.	2.3	15
468	<i>MPO</i> Promoter Polymorphism rs2333227 Enhances Malignant Phenotypes of Colorectal Cancer by Altering the Binding Affinity of AP-21±. Cancer Research, 2018, 78, 2760-2769.	0.4	15

#	Article	IF	CITATIONS
469	The impact of obesity on brain iron levels and α-synuclein expression is regionally dependent. Nutritional Neuroscience, 2019, 22, 335-343.	1.5	15
470	Perturbation of Specific Signaling Pathways Is Involved in Initiation of Mouse Liver Fibrosis. Hepatology, 2021, 73, 1551-1569.	3.6	15
471	Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants, 2021, 10, 1643.	2.2	15
472	miRNA-148b and its role in various cancers. Epigenomics, 2021, 13, 1939-1960.	1.0	15
473	Differential sensitivity of neonatal rat astrocyte cultures to mercuric chloride (MC) and methylmercury (MeHg): studies on K+ and amino acid transport and metallothionein (MT) induction. NeuroToxicology, 1996, 17, 107-16.	1.4	15
474	Interactions between pesticides and glia: an unexplored experimental field. NeuroToxicology, 2000, 21, 175-80.	1.4	15
475	Comparison of the Toxic Effects of Quinolinic Acid and 3-Nitropropionic Acid in C. elegans: Involvement of the SKN-1 Pathway. Neurotoxicity Research, 2018, 33, 259-267.	1.3	14
476	Acute glufosinate-based herbicide treatment in rats leads to increased ocular interleukin-1β and c-Fos protein levels, as well as intraocular pressure. Toxicology Reports, 2019, 6, 155-160.	1.6	14
477	Simultaneous exposure to vinylcyclohexene and methylmercury in Drosophila melanogaster: biochemical and molecular analyses. BMC Pharmacology & Toxicology, 2019, 20, 83.	1.0	14
478	Sex-Specific Response of Caenorhabditis elegans to Methylmercury Toxicity. Neurotoxicity Research, 2019, 35, 208-216.	1.3	14
479	Glutathione in Chlorpyrifos-and Chlorpyrifos-Oxon-Induced Toxicity: a Comparative Study Focused on Non-cholinergic Toxicity in HT22 Cells. Neurotoxicity Research, 2020, 38, 603-610.	1.3	14
480	Drp-1-Dependent Mitochondrial Fragmentation Contributes to Cobalt Chloride-Induced Toxicity in Caenorhabditis elegans. Toxicological Sciences, 2020, 177, 158-167.	1.4	14
481	Isolevuglandins (isoLGs) as toxic lipid peroxidation byproducts and their pathogenetic role in human diseases. Free Radical Biology and Medicine, 2021, 162, 266-273.	1.3	14
482	Curcumin Efficacy in a Serum/Glucose Deprivation-Induced Neuronal PC12 Injury Model. Current Molecular Pharmacology, 2021, 14, 1146-1155.	0.7	14
483	Assessing the neurotoxicity of the carbamate methomyl in Caenorhabditis elegans with a multi-level approach. Toxicology, 2021, 451, 152684.	2.0	14
484	New insights on mechanisms underlying methylmercury-induced and manganese-induced neurotoxicity. Current Opinion in Toxicology, 2021, 25, 30-35.	2.6	14
485	Probiotics and the Treatment of Parkinson's Disease: An Update. Cellular and Molecular Neurobiology, 2022, 42, 2449-2457.	1.7	14
486	Toxicology of alkylmercury compounds. Metal Ions in Life Sciences, 2010, 7, 403-34.	2.8	14

#	Article	IF	CITATIONS
487	Astrocytic transcription factor REST upregulates glutamate transporter EAAT2, protecting dopaminergic neurons from manganese-induced excitotoxicity. Journal of Biological Chemistry, 2021, 297, 101372.	1.6	14
488	Suppression of colorectal carcinogenesis by naringin. Phytomedicine, 2022, 96, 153897.	2.3	14
489	Astrocytes in methylmercury, ammonia, methionine sulfoximine and alcohol-induced neurotoxicity. NeuroToxicology, 2000, 21, 573-9.	1.4	14
490	<i>In Vitro</i> Manganese Exposure Disrupts MAPK Signaling Pathways in Striatal and Hippocampal Slices from Immature Rats. BioMed Research International, 2013, 2013, 1-12.	0.9	13
491	Methylmercury Alters the Activities of Hsp90 Client Proteins, Prostaglandin E Synthase/p23 (PGES/23) and nNOS. PLoS ONE, 2014, 9, e98161.	1.1	13
492	Associations between former exposure to manganese and olfaction in an elderly population: Results from the Heinz Nixdorf Recall Study. NeuroToxicology, 2017, 58, 58-65.	1.4	13
493	Triclosan induces PC12 cells injury is accompanied by inhibition of AKT/mTOR and activation of p38 pathway. NeuroToxicology, 2019, 74, 221-229.	1.4	13
494	Modified expression of antioxidant genes in lobster cockroach, Nauphoeta cinerea exposed to methylmercury and monosodium glutamate. Chemico-Biological Interactions, 2020, 318, 108969.	1.7	13
495	Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension. Current Hypertension Reviews, 2021, 17, 14-26.	0.5	13
496	Alkaloids and Colon Cancer: Molecular Mechanisms and Therapeutic Implications for Cell Cycle Arrest. Molecules, 2022, 27, 920.	1.7	13
497	Acrylonitrile has Distinct Hormetic Effects on Acetylcholinesterase Activity in Mouse Brain and Blood that are Modulated by Ethanol. Dose-Response, 2013, 11, dose-response.1.	0.7	12
498	Caenorhabditis elegans as a model system to study post-translational modifications of human transthyretin. Scientific Reports, 2016, 6, 37346.	1.6	12
499	Preconditioning of endoplasmic reticulum stress protects against acrylonitrile-induced cytotoxicity in primary rat astrocytes: The role of autophagy. NeuroToxicology, 2016, 55, 112-121.	1.4	12
500	Imaging metals in Caenorhabditis elegans. Metallomics, 2017, 9, 357-364.	1.0	12
501	Sodium P-aminosalicylic Acid Inhibits Manganese-Induced Neuroinflammation in BV2 Microglial Cells via NLRP3-CASP1 Inflammasome Pathway. Biological Trace Element Research, 2021, 199, 3423-3432.	1.9	12
502	Plumbagin attenuates traumatic tracheal stenosis in rats and inhibits lung fibroblast proliferation and differentiation via TGF-l²1/Smad and Akt/mTOR pathways. Bioengineered, 2021, 12, 4475-4488.	1.4	12
503	Perturbed MAPK signaling in ASD: Impact of metal neurotoxicity. Current Opinion in Toxicology, 2021, 26, 1-7.	2.6	12
504	d-Ribose-l-Cysteine Improves Glutathione Levels, Neuronal and Mitochondrial Ultrastructural Damage, Caspase-3 and GFAP Expressions Following Manganese-Induced Neurotoxicity. Neurotoxicity Research, 2021, 39, 1846-1858.	1.3	12

#	Article	IF	CITATIONS
505	3,3′-diindolylmethane exerts antiproliferation and apoptosis induction by TRAF2-p38 axis in gastric cancer. Anti-Cancer Drugs, 2021, 32, 189-202.	0.7	12
506	XRCC1 mediated the development of cervival cancer through a novel Sp1/Krox-20 swich. Oncotarget, 2017, 8, 86217-86226.	0.8	12
507	Hydrogen Sulfide (H2S) Signaling as a Protective Mechanism against Endogenous and Exogenous Neurotoxicants. Current Neuropharmacology, 2022, 20, 1908-1924.	1.4	12
508	Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics, 2016, 8, 597-604.	1.0	11
509	Comparing the Effects of Ferulic Acid and Sugarcane Aqueous Extract in In Vitro and In Vivo Neurotoxic Models. Neurotoxicity Research, 2018, 34, 640-648.	1.3	11
510	Aluminium levels in hair and urine are associated with overweight and obesity in a non-occupationally exposed population. Journal of Trace Elements in Medicine and Biology, 2019, 56, 139-145.	1.5	11
511	Plant components can reduce methylmercury toxication: A mini-review. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129290.	1.1	11
512	Treatment of Caenorhabditis elegans with Small Selenium Species Enhances Antioxidant Defense Systems. Molecular Nutrition and Food Research, 2019, 63, 1801304.	1.5	11
513	Methylmercury Induces Metabolic Alterations in Caenorhabditis elegans: Role for C/EBP Transcription Factor. Toxicological Sciences, 2020, 174, 112-123.	1.4	11
514	Environmentally relevant developmental methylmercury exposures alter neuronal differentiation in a human-induced pluripotent stem cell model. Food and Chemical Toxicology, 2021, 152, 112178.	1.8	11
515	Association of lead and cadmium exposure with kidney stone incidence: A study on the non-occupational population in Nandan of China. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126852.	1.5	11
516	PP2A-mTOR-p70S6K/4E-BP1 axis regulates M1 polarization of pulmonary macrophages and promotes ambient particulate matter induced mouse lung injury. Journal of Hazardous Materials, 2022, 424, 127624.	6.5	11
517	Determination of tipping point in course of PM2.5 organic extracts-induced malignant transformation by dynamic network biomarkers. Journal of Hazardous Materials, 2022, 426, 128089.	6.5	11
518	Ferroptosis contributes to methylmercury-induced cytotoxicity in rat primary astrocytes and Buffalo rat liver cells. NeuroToxicology, 2022, 90, 228-236.	1.4	11
519	Occupational Exposure to Manganese and Fine Motor Skills in Elderly Men: Results from the Heinz Nixdorf Recall Study. Annals of Work Exposures and Health, 2017, 61, 1118-1131.	0.6	10
520	The Catecholaminergic Neurotransmitter System in Methylmercury-Induced Neurotoxicity. Advances in Neurotoxicology, 2017, 1, 47-81.	0.7	10
521	Organotins in obesity and associated metabolic disturbances. Journal of Inorganic Biochemistry, 2019, 191, 49-59.	1.5	10
522	Cephalic Neuronal Vesicle Formation is Developmentally Dependent and Modified by Methylmercury and sti-1 in Caenorhabditis elegans. Neurochemical Research, 2020, 45, 2939-2948.	1.6	10

#	Article	IF	CITATIONS
523	Transcriptomic and Proteomic Tools in the Study of Hg Toxicity: What Is Missing?. Frontiers in Genetics, 2020, 11, 425.	1.1	10
524	Thallium Toxicity in Caenorhabditis elegans: Involvement of the SKN-1 Pathway and Protection by S-Allylcysteine. Neurotoxicity Research, 2020, 38, 287-298.	1.3	10
525	Review of the mechanism underlying mefloquine-induced neurotoxicity. Critical Reviews in Toxicology, 2021, 51, 209-216.	1.9	10
526	Latent alterations in swimming behavior by developmental methylmercury exposure are modulated by the homolog of tyrosine hydroxylase in Caenorhabditis elegans. Neurotoxicology and Teratology, 2021, 85, 106963.	1.2	10
527	Single cell RNA sequencing detects persistent cell type- and methylmercury exposure paradigm-specific effects in a human cortical neurodevelopmental model. Food and Chemical Toxicology, 2021, 154, 112288.	1.8	10
528	Diterpene glycosides from Holothuria scabra exert the α-synuclein degradation and neuroprotection against α-synuclein-Mediated neurodegeneration in C. elegans model. Journal of Ethnopharmacology, 2021, 279, 114347.	2.0	10
529	The impact of COVID-19 vaccination on case fatality rates in a city in Southern Brazil. American Journal of Infection Control, 2022, 50, 491-496.	1.1	10
530	An Update on the Effects of Probiotics on Gastrointestinal Cancers. Frontiers in Pharmacology, 2021, 12, 680400.	1.6	10
531	Neurotoxicology: Principles and Considerations of In Vitro Assessment. ATLA Alternatives To Laboratory Animals, 2004, 32, 323-327.	0.7	9
532	Comparison Between 5-Aminosalicylic Acid (5-ASA) and Para-Aminosalicylic Acid (4-PAS) as Potential Protectors Against Mn-Induced Neurotoxicity. Biological Trace Element Research, 2013, 152, 113-116.	1.9	9
533	Selenoneine ameliorates peroxide-induced oxidative stress in C. elegans. Journal of Trace Elements in Medicine and Biology, 2019, 55, 78-81.	1.5	9
534	N,N' bis-(2-mercaptoethyl) isophthalamide induces developmental delay in Caenorhabditis elegans by promoting DAF-16 nuclear localization. Toxicology Reports, 2020, 7, 930-937.	1.6	9
535	S-Allylcysteine Protects Against Excitotoxic Damage in Rat Cortical Slices Via Reduction of Oxidative Damage, Activation of Nrf2/ARE Binding, and BDNF Preservation. Neurotoxicity Research, 2020, 38, 929-940.	1.3	9
536	Metal-induced neurotoxicity in a RAGE-expressing C. elegans model. NeuroToxicology, 2020, 80, 71-75.	1.4	9
537	Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: review of the current literature. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 581-593.	1.5	9
538	Volume Measurements in Cultured Primary Astrocytes. Methods in Molecular Biology, 2011, 758, 391-402.	0.4	9
539	Phytochemical profile, antioxidant, antiproliferative, and enzyme inhibition-docking analyses of Salvia ekimiana Celep & DoÄŸan. South African Journal of Botany, 2022, 146, 36-47.	1.2	9
540	Therapeutic potential of marine peptides in cervical and ovarian cancers. Molecular and Cellular Biochemistry, 2022, 477, 605-619.	1.4	9

#	Article	IF	CITATIONS
541	Effects of co-exposure to lead and manganese on learning and memory deficits. Journal of Environmental Sciences, 2022, 121, 65-76.	3.2	9
542	Therapeutic Role of Carotenoids in Blood Cancer: Mechanistic Insights and Therapeutic Potential. Nutrients, 2022, 14, 1949.	1.7	9
543	The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules, 2022, 27, 4145.	1.7	9
544	Astrocytes as potential modulators of mercuric chloride neurotoxicity. Cellular and Molecular Neurobiology, 1994, 14, 637-652.	1.7	8
545	Optimization of Fluorescence Assay of Cellular Manganese Status for High Throughput Screening. Journal of Biochemical and Molecular Toxicology, 2013, 27, 42-49.	1.4	8
546	An uncommon pattern of polyneuropathy induced by lifetime exposures to drift containing organophosphate pesticides. NeuroToxicology, 2014, 45, 338-346.	1.4	8
547	Dysregulation of Glutamate Cycling Mediates Methylmercury-Induced Neurotoxicity. Advances in Neurobiology, 2016, 13, 295-305.	1.3	8
548	Human-induced pluripotent stems cells as a model to dissect the selective neurotoxicity of methylmercury. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129300.	1.1	8
549	Antiurolithiatic effects of pentacyclic triterpenes: The distance traveled from therapeutic aspects. Drug Development Research, 2020, 81, 671-684.	1.4	8
550	A potential role for zinc in restless legs syndrome. Sleep, 2021, 44, .	0.6	8
551	Sodium P-aminosalicylic Acid Attenuates Manganese-Induced Neuroinflammation in BV2 Microglia by Modulating NF-κB Pathway. Biological Trace Element Research, 2021, 199, 4688-4699.	1.9	8
552	Alterations in serum amino acid profiles in children with attention deficit/hyperactivity disorder. Biomedical Reports, 2021, 14, 47.	0.9	8
553	Acute acrylonitrile exposure inhibits endogenous H2S biosynthesis in rat brain and liver: The role of CBS/3-MPST-H2S pathway in its astrocytic toxicity. Toxicology, 2021, 451, 152685.	2.0	8
554	Protective Effects of Novel Substituted Triazinoindole Inhibitors of Aldose Reductase and Epalrestat in Neuron-like PC12 Cells and BV2 Rodent Microglial Cells Exposed to Toxic Models of Oxidative Stress: Comparison with the Pyridoindole Antioxidant Stobadine. Neurotoxicity Research, 2021, 39, 588-597.	1.3	8
555	Therapeutic Potential of Resveratrol in the Treatment of Glioma: Insights into its Regulatory Mechanisms. Mini-Reviews in Medicinal Chemistry, 2021, 21, 2835-2847.	1.1	8
556	Therapeutic potential of marine peptides in glioblastoma: Mechanistic insights. Cellular Signalling, 2021, 87, 110142.	1.7	8
557	Hypoxia causes mitochondrial dysfunction and brain memory disorder in a manner mediated by the reduction of Cirbp. Science of the Total Environment, 2022, 806, 151228.	3.9	8
558	BXD Recombinant Inbred Mice as a Model to Study Neurotoxicity. Biomolecules, 2021, 11, 1762.	1.8	8

#	Article	IF	CITATIONS
559	CpG site-specific methylation as epi-biomarkers for the prediction of health risk in PAHs-exposed populations. Journal of Hazardous Materials, 2022, 431, 128538.	6.5	8
560	Smoking is associated with altered serum and hair essential metal and metalloid levels in women. Food and Chemical Toxicology, 2022, 167, 113249.	1.8	8
561	The role of sulfhydryl groups ind-aspartate and rubidium release from neonatal rat primary astrocyte cultures. Brain Research, 1994, 648, 16-23.	1.1	7
562	Metallothioneins Attenuate Methylmercury-Induced Neurotoxicity in Cultured Astrocytes and Astrocytoma Cells. Annals of the New York Academy of Sciences, 1999, 890, 223-226.	1.8	7
563	Manganese in the shower: Mere speculation over an invalidated public health danger. Medical Hypotheses, 2006, 66, 200-201.	0.8	7
564	Introduction to the special issue on emerging high throughput and complementary model screens for neurotoxicology. Neurotoxicology and Teratology, 2010, 32, 1-3.	1.2	7
565	A Simple Light Stimulation of <i>Caenorhabditis elegans</i> . Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2016, 67, 11.21.1-11.21.5.	1.1	7
566	Upholding science in health, safety and environmental risk assessments and regulations. Toxicology, 2016, 371, 12-16.	2.0	7
567	BXD recombinant inbred strains participate in social preference, anxiety and depression behaviors along sex-differences in cytokines and tactile allodynia. Psychoneuroendocrinology, 2017, 80, 92-98.	1.3	7
568	Differential susceptibility of PC12 and BRL cells and the regulatory role of HIF-1α signaling pathway in response to acute methylmercury exposure under normoxia. Toxicology Letters, 2020, 331, 82-91.	0.4	7
569	Therapeutic potential of alkaloids in autoimmune diseases: Promising candidates for clinical trials. Phytotherapy Research, 2021, 35, 50-62.	2.8	7
570	Social injustice in environmental health: A call for fortitude. Environmental Research, 2021, 194, 110675.	3.7	7
571	Molecular targets for the management of gastrointestinal cancer using melatonin, a natural endogenous body hormone. Biomedicine and Pharmacotherapy, 2021, 140, 111782.	2.5	7
572	The antioxidant role of STAT3 in methylmercury-induced toxicity in mouse hypothalamic neuronal GT1-7Âcell line. Free Radical Biology and Medicine, 2021, 171, 245-259.	1.3	7
573	Manganese-induced reactive oxygen species activate ll̂®B kinase to upregulate YY1 and impair glutamate transporter EAAT2 function in human astrocytes in vitro. NeuroToxicology, 2021, 86, 94-103.	1.4	7
574	Pain Perception and Management: Where do We Stand?. Current Molecular Pharmacology, 2021, 14, 678-688.	0.7	7
575	Aquaporin 4 in Traumatic Brain Injury: From Molecular Pathways to Therapeutic Target. Neurochemical Research, 2022, 47, 860.	1.6	7
576	How Curcumin Targets Inflammatory Mediators in Diabetes: Therapeutic Insights and Possible Solutions. Molecules, 2022, 27, 4058.	1.7	7

#	Article	IF	CITATIONS
577	Changes in Axonally Transported Proteins in the Mature and Developing Rat Nervous System During Early Stages of Methyl Mercury Exposure. Basic and Clinical Pharmacology and Toxicology, 1987, 60, 81-85.	0.0	6
578	The Acute Effects of Acrylamide on Astrocyte Functions. Annals of the New York Academy of Sciences, 2003, 993, 296-304.	1.8	6
579	Frontiers in Toxicogenomics in the Twenty-First Century—the Grand Challenge: To Understand How the Genome and Epigenome Interact with the Toxic Environment at the Single-Cell, Whole-Organism, and Multi-Generational Level. Frontiers in Genetics, 2017, 8, 173.	1.1	6
580	C. elegans—An Emerging Model to Study Metal-Induced RAGE-Related Pathologies. International Journal of Environmental Research and Public Health, 2018, 15, 1407.	1.2	6
581	Blood reference values for metals in a general adult population in southern Brazil. Environmental Research, 2019, 177, 108646.	3.7	6
582	Oleamide Induces Cell Death in Glioblastoma RG2 Cells by a Cannabinoid Receptor–Independent Mechanism. Neurotoxicity Research, 2020, 38, 941-956.	1.3	6
583	Metal environmental contamination within different human exposure context- specific and non-specific biomarkers. Toxicology Letters, 2020, 324, 46-53.	0.4	6
584	Therapeutic Efficacy of the N,N′ Bis-(2-Mercaptoethyl) Isophthalamide Chelator for Methylmercury Intoxication in Caenorhabditis elegans. Neurotoxicity Research, 2020, 38, 133-144.	1.3	6
585	Chronic exposure to methylmercury enhances the anorexigenic effects of leptin in C57BL/6J male mice. Food and Chemical Toxicology, 2021, 147, 111924.	1.8	6
586	Haloperidol Interactions with the dop-3 Receptor in Caenorhabditis elegans. Molecular Neurobiology, 2021, 58, 304-316.	1.9	6
587	Nutritive Manganese and Zinc Overdosing in Aging <i>C. elegans</i> Result in a Metallothioneinâ€Mediated Alteration in Metal Homeostasis. Molecular Nutrition and Food Research, 2021, 65, e2001176.	1.5	6
588	Overview of Chemotaxis Behavior Assays in Caenorhabditis elegans. Current Protocols, 2021, 1, e120.	1.3	6
589	Therapeutic Effects of Sodium Para-Aminosalicylic Acid on Cognitive Deficits and Activated ERK1/2-p90RSK/NF-κB Inflammatory Pathway in Pb-Exposed Rats. Biological Trace Element Research, 2022, 200, 2807-2815.	1.9	6
590	Hair Lead, Aluminum, and Other Toxic Metals in Normal-Weight and Obese Patients with Coronary Heart Disease. International Journal of Environmental Research and Public Health, 2021, 18, 8195.	1.2	6
591	Rodent hair is a Poor biomarker for internal manganese exposure. Food and Chemical Toxicology, 2021, 157, 112555.	1.8	6
592	Manganese phosphorylates Yin Yang 1 at serine residues to repress EAAT2 in human H4 astrocytes. Toxicology Letters, 2022, 355, 41-46.	0.4	6
593	Quercetin and Glioma: Which Signaling Pathways are Involved?. Current Molecular Pharmacology, 2022, 15, 962-968.	0.7	6
594	Developmental exposure to methylmercury and ADHD, a literature review of epigenetic studies. Environmental Epigenetics, 2021, 7, dvab014.	0.9	6

#	Article	IF	CITATIONS
595	Oxytocin Effect in Adult Patients with Autism: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. CNS and Neurological Disorders - Drug Targets, 2023, 22, 906-915.	0.8	6
596	Neurotoxicity Evaluation of Nanomaterials Using <i>C. elegans</i> : Survival, Locomotion Behaviors, and Oxidative Stress. Current Protocols, 2022, 2, .	1.3	6
597	Adenosine modulates methylmercuric chloride (MeHgCl)-inducedd-aspartate release from neonatal rat primary astrocyte cultures. Brain Research, 1995, 689, 1-8.	1.1	5
598	Effects of Acrylamide on Primary Neonatal Rat Astrocyte Functions. Annals of the New York Academy of Sciences, 2005, 1053, 444-454.	1.8	5
599	Differential interaction of hGDH1 and hGDH2 with manganese: Implications for metabolism and toxicity. Neurochemistry International, 2015, 88, 60-65.	1.9	5
600	Nutritional, Genetic, and Molecular Aspects of Manganese Intoxication. , 2017, , 367-376.		5
601	System-specific neurodegeneration following glucotoxicity in the C. elegans model. NeuroToxicology, 2018, 68, 88-90.	1.4	5
602	The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner. NeuroToxicology, 2018, 68, 189-202.	1.4	5
603	Caenorhabditis elegans and its applicability to studies on restless legs syndrome. Advances in Pharmacology, 2019, 84, 147-174.	1.2	5
604	Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo. Biological Trace Element Research, 2019, 188, 127-134.	1.9	5
605	High throughput fluorimetric assessment of iron traffic and chelation in iron-overloaded Caenorhabditis elegans. BioMetals, 2020, 33, 255-267.	1.8	5
606	The Role of Human LRRK2 in Methylmercury-Induced Inhibition of Microvesicle Formation of Cephalic Neurons in Caenorhabditis elegans. Neurotoxicity Research, 2020, 38, 751-764.	1.3	5
607	The effect of diazinon on blood glucose homeostasis: a systematic and meta-analysis study. Environmental Science and Pollution Research, 2021, 28, 4007-4018.	2.7	5
608	URB597 Prevents the Short-Term Excitotoxic Cell Damage in Rat Cortical Slices: Role of Cannabinoid 1 Receptors. Neurotoxicity Research, 2021, 39, 146-155.	1.3	5
609	A systematic review on the metabolic effects of chlorpyrifos. Reviews on Environmental Health, 2022, 37, 137-151.	1.1	5
610	The Role of Human LRRK2 in Acute Methylmercury Toxicity in Caenorhabditis elegans. Neurochemical Research, 2021, 46, 2991-3002.	1.6	5
611	Platinum nanoparticles Protect Against Lipopolysaccharide-Induced Inflammation in Microglial BV-2 Cells via Decreased Oxidative Damage and Increased Phagocytosis. Neurochemical Research, 2021, 46, 3325-3341.	1.6	5
612	Conjugates of desferrioxamine and aromatic amines improve markers of iron-dependent neurotoxicity. BioMetals, 2021, 34, 259-275.	1.8	5

#	Article	IF	CITATIONS
613	The Endocannabinoid System in Caenorhabditis elegans. Reviews of Physiology, Biochemistry and Pharmacology, 2021, , 1-31.	0.9	5
614	Effects of Sub-chronic Lead Exposure on Essential Element Levels in Mice. Biological Trace Element Research, 2023, 201, 282-293.	1.9	5
615	BTBD9 attenuates manganese-induced oxidative stress and neurotoxicity by regulating insulin growth factor signaling pathway. Human Molecular Genetics, 2022, 31, 2207-2222.	1.4	5
616	Alpha-Mangostin Alleviates the Short-term 6-Hydroxydopamine-Induced Neurotoxicity and Oxidative Damage in Rat Cortical Slices and in Caenorhabditis elegans. Neurotoxicity Research, 2022, 40, 573-584.	1.3	5
617	Preventive treatment with sodium para-aminosalicylic acid inhibits manganese-induced apoptosis and inflammation <i>via</i> the MAPK pathway in rat thalamus. Drug and Chemical Toxicology, 2023, 46, 59-68.	1.2	5
618	Toxic metals that interact with thiol groups and alteration in insect behavior. Current Opinion in Insect Science, 2022, 52, 100923.	2.2	5
619	Thallium Induces Antiproliferative and Cytotoxic Activity in Glioblastoma C6 and U373 Cell Cultures via Apoptosis and Changes in Cell Cycle. Neurotoxicity Research, 2022, 40, 814-824.	1.3	5
620	Sexâ€dependent metal accumulation and immunoexpression of Hsp70 and Nrf2 in rats' brain following manganese exposure. Environmental Toxicology, 2022, 37, 2167-2177.	2.1	5
621	Deletion of RE1â€silencing transcription factor in striatal astrocytes exacerbates manganeseâ€induced neurotoxicity in mice. Glia, 2022, 70, 1886-1901.	2.5	5
622	Developmental lead exposure affects dopaminergic neuron morphology and modifies basal slowing response in Caenorhabditis elegans: Effects of ethanol. NeuroToxicology, 2022, 91, 349-359.	1.4	5
623	Flavonoids Targeting the mTOR Signaling Cascades in Cancer: A Potential Crosstalk in Anti-Breast Cancer Therapy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-14.	1.9	5
624	Mucocutaneous Lymph Node Syndrome: Is There a Relationship to Mercury Exposure?. JAMA Pediatrics, 1989, 143, 1133.	3.6	4
625	Amino Acid Uptake and Release in Primary Astrocyte Cultures Exposed to Ethanol. Annals of the New York Academy of Sciences, 2001, 939, 23-27.	1.8	4
626	Morphometric Analysis in Neurodegenerative Disorders. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2010, 46, 12.16.1.	1.1	4
627	Highâ€Resolution Multiâ€Photon Imaging of Morphological Structures of Caenorhabditis elegans. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2015, 64, 11.19.1-11.	1.1	4
628	RNASeq in C. elegans Following Manganese Exposure. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2015, 65, 11.20.1-11.20.17.	1.1	4
629	Parenteral Nutrition as an Unexpected and Preventable Source of Mercury Exposure in Preterm Infants. Journal of Pediatrics, 2015, 166, 1533-1535.	0.9	4
630	Chronic exposure to methylmercury disrupts ghrelin actions in C57BL/6J mice. Food and Chemical Toxicology, 2021, 147, 111918.	1.8	4

#	Article	IF	CITATIONS
631	Redox-active phytoconstituents ameliorate cell damage and inflammation in rat hippocampal neurons exposed to hyperglycemia+Aβ1-42 peptide. Neurochemistry International, 2021, 145, 104993.	1.9	4
632	S-allylcysteine induces cytotoxic effects in two human lung cancer cell lines via induction of oxidative damage, downregulation of Nrf2 and NF-κB, and apoptosis. Anti-Cancer Drugs, 2021, 32, 117-126.	0.7	4
633	Methamphetamine Dysregulates Redox Status in Primary Rat Astrocyte and Mesencephalic Neuronal Cultures. American Journal of Neuroprotection and Neuroregeneration, 2009, 1, 52-59.	0.1	4
634	Effects of Manganese on Genomic Integrity in the Multicellular Model Organism Caenorhabditis elegans. International Journal of Molecular Sciences, 2021, 22, 10905.	1.8	4
635	Impact of Cannabis-Based Medicine on Alzheimer's Disease by Focusing on the Amyloid β-Modifications: A Systematic Study. CNS and Neurological Disorders - Drug Targets, 2020, 19, 334-343.	0.8	4
636	Neuroprotective and Therapeutic Strategies for Manganese-Induced Neurotoxicity. Clinical Pharmacology and Translational Medicine, 2017, 1, 54-62.	0.3	4
637	Effect of Solanum vegetables on memory index, redox status, and expressions of critical neural genes in Drosophila melanogaster model of memory impairment. Metabolic Brain Disease, 2022, 37, 729-741.	1.4	4
638	Leveraging artificial intelligence to advance the understanding of chemical neurotoxicity. NeuroToxicology, 2022, 89, 9-11.	1.4	4
639	The influences of ambient fine particulate matter constituents on plasma hormones, circulating TMAO levels and blood pressure: A panel study in China. Environmental Pollution, 2022, 296, 118746.	3.7	4
640	Chemotherapeutic Risk IncRNA-PVT1 SNP Sensitizes Metastatic Colorectal Cancer to FOLFOX Regimen. Frontiers in Oncology, 2022, 12, 808889.	1.3	4
641	Protein phosphatase 2A regulates cytotoxicity and drug resistance by dephosphorylating AHR and MDR1. Journal of Biological Chemistry, 2022, 298, 101918.	1.6	4
642	Methylcyclopentadienyl Manganese Tricarbonyl Alter Behavior and Cause Ultrastructural Changes in the Substantia Nigra of Rats: Comparison with Inorganic Manganese Chloride. Neurochemical Research, 2022, 47, 2198-2210.	1.6	4
643	Effects of Systemic Methyl Mercuryâ€Adulterated Water Consumption on Fast Axonal Transport in the Rat Visual System. Acta Pharmacologica Et Toxicologica, 1986, 59, 349-355.	0.0	3
644	New tools for the quantitative assessment of prodrug delivery and neurotoxicity. NeuroToxicology, 2015, 47, 88-98.	1.4	3
645	Resistance of mouse primary microglia and astrocytes to acrylonitrile-induced oxidative stress. NeuroToxicology, 2017, 63, 120-125.	1.4	3
646	AGEs/RAGE-Related Neurodegeneration: <i>daf-16</i> as a Mediator, Insulin as an Ameliorant, and <i>C. elegans</i> as an Expedient Research Model. Chemical Research in Toxicology, 2017, 30, 38-42.	1.7	3
647	A C. elegans Model for the Study of RAGE-Related Neurodegeneration. Neurotoxicity Research, 2019, 35, 19-28.	1.3	3
648	The biochemistry of mercury toxicity. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129412.	1.1	3

#	Article	IF	CITATIONS
649	The BXD21/TyJ recombinant inbred strain as a model for innate inflammatory response in distinct brain regions. Scientific Reports, 2020, 10, 13168.	1.6	3
650	Identification of a selective manganese ionophore that enables nonlethal quantification of cellular manganese. Journal of Biological Chemistry, 2020, 295, 3875-3890.	1.6	3
651	Whole body potassium as a biomarker for potassium uptake using a mouse model. Scientific Reports, 2021, 11, 6385.	1.6	3
652	Meteorological parameters and cases of COVID-19 in Brazilian cities: an observational study. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2022, 85, 14-28.	1.1	3
653	Caenorhabditis elegans as a model for studies on quinolinic acid-induced NMDAR-dependent glutamatergic disorders. Brain Research Bulletin, 2021, 175, 90-98.	1.4	3
654	Multibiomarker approach to assess the magnitude of occupational exposure and effects induced by a mixture of metals. Toxicology and Applied Pharmacology, 2021, 429, 115684.	1.3	3
655	A Novel Diselenide-Probucol-Analogue Protects Against Methylmercury-Induced Toxicity in HT22 Cells by Upregulating Peroxide Detoxification Systems: a Comparison with Diphenyl Diselenide. Neurotoxicity Research, 2022, 40, 127-139.	1.3	3
656	Resveratrol and Cervical Cancer: A New Therapeutic Option?. Mini-Reviews in Medicinal Chemistry, 2022, 22, .	1.1	3
657	D-Ribose-LCysteine attenuates manganese-induced cognitive and motor deficit, oxidative damage, and reactive microglia activation. Environmental Toxicology and Pharmacology, 2022, 93, 103872.	2.0	3
658	Obfuscating transparency?. Regulatory Toxicology and Pharmacology, 2018, 97, A1-A3.	1.3	2
659	Risk factors associated with COVID-19-induced death in patients hospitalized in intensive care units (ICUs) in a city in Southern Brazil. Toxicology Reports, 2021, 8, 1565-1568.	1.6	2
660	Novel Pharmacotherapies for L-DOPA-Induced Dyskinesia. , 2021, , 1-19.		2
661	Perinatal and early-life cobalt exposure impairs essential metal metabolism in immature ICR mice. Food and Chemical Toxicology, 2021, 149, 111973.	1.8	2
662	Measurement of the Effects of Metals on Taxisâ€ŧoâ€Food Behavior in <i>Caenorhabditis elegans</i> . Current Protocols, 2021, 1, e131.	1.3	2
663	Application of and Behavioral Assays to Demonstrating Neuronal and Neurotransmitter Systems in C. elegans. Neuromethods, 2021, , 399-426.	0.2	2
664	Early Expression of Neuronal Dopaminergic Markers in a Parkinson's Disease Model in Rats Implanted with Enteric Stem Cells (ENSCs). CNS and Neurological Disorders - Drug Targets, 2020, 19, 148-162.	0.8	2
665	Aquaporin 4 and brain-related disorders: Insights into its apoptosis roles. EXCLI Journal, 2021, 20, 983-994.	0.5	2
666	Ghrelin attenuates methylmercury-induced oxidative stress in neuronal cells. Molecular Neurobiology, 2022, 59, 2098-2115.	1.9	2

#	Article	IF	CITATIONS
667	Assessment of intestinal injury of hexavalent chromium using a modified in vitro gastrointestinal digestion model. Toxicology and Applied Pharmacology, 2022, 436, 115880.	1.3	2
668	The Modulatory Role of sti-1 in Methylmercury-Induced Toxicity in Caenorhabditis elegans. Neurotoxicity Research, 2022, 40, 837-846.	1.3	2
669	Iron overload and neurodegenerative diseases: What can we learn from <i>Caenorhabditis elegans</i> ?. Toxicology Research and Application, 2022, 6, 239784732210918.	0.7	2
670	Resveratrol in Cancer Treatment with a Focus on Breast Cancer. Current Molecular Pharmacology, 2023, 16, 346-361.	0.7	2
671	The Human LRRK2 Modulates the Age-Dependent Effects of Developmental Methylmercury Exposure in Caenorhabditis elegans. Neurotoxicity Research, 0, , .	1.3	2
672	Changes in Axonally Transported Proteins in the Rat Visual System Following Systemic Methyl Mercury Exposure. Acta Pharmacologica Et Toxicologica, 1986, 59, 151-157.	0.0	1
673	Editorial: Sex and Gene-Dependent Neurotoxicity. Frontiers in Genetics, 2019, 10, 165.	1.1	1
674	Are we rushing too much?. Food and Chemical Toxicology, 2020, 143, 111551.	1.8	1
675	Generating Bacterial Foods in Toxicology Studies with Caenorhabditis elegans. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2020, 84, e94.	1.1	1
676	Caenorhabitidis elegans as an animal model in toxicological studies. , 2020, , 533-544.		1
677	Evaluations of Environmental Pollutant-Induced Mitochondrial Toxicity Using Caenorhabditis elegans as a Model System. Methods in Molecular Biology, 2021, 2326, 33-46.	0.4	1
678	Protective Effects of Sodium Para-aminosalicylic Acid on Manganese-Induced Damage in Rat Pancreas. Biological Trace Element Research, 2021, 199, 3759-3771.	1.9	1
679	Strategic approaches to target the enzymes using natural compounds for the management of Alzheimer's disease: A review. CNS and Neurological Disorders - Drug Targets, 2021, 20, .	0.8	1
680	Oxidative Stress Indices Changes in the Hearts of Rat Pups in Response to Maternal Buprenorphine Treatment during Gestation and Lactation. Cardiovascular Toxicology, 2021, , 1.	1.1	1
681	Introducing Cloned Genes into Cultured Neurons Providing Novel In vitro Models for Neuropathology and Neurotoxicity Studies. Neuromethods, 2011, 56, 185-222.	0.2	1
682	Neuronal Oxidative Injury and Biomarkers of Lipid Peroxidation. Neuromethods, 2011, 56, 349-363.	0.2	1
683	When the boundaries between science and politics are blurred. Toxicology Reports, 2020, 7, 1607.	1.6	1
684	Natural Products in the Promotion of Healthspan and Longevity. Clinical Pharmacology and Translational Medicine, 2019, 3, 149-151.	0.3	1

#	Article	IF	CITATIONS
685	Toxic Mechanisms Underlying Motor Activity Changes Induced by a Mixture of Lead, Arsenic and Manganese. , 2017, 3, 31-42.		1
686	The Scientist. Scientist, 2003, 17, 50-51.	2.0	1
687	Acidosis-induced metallothionein (MT) mRNA expression in neonatal rat primary astrocyte cultures. NeuroToxicology, 1998, 19, 227-36.	1.4	1
688	Differential effects of subchronic acrylonitrile exposure on hydrogen sulfide levels in rat blood, brain, and liver. Toxicology Research, 2022, 11, 374-384.	0.9	1
689	Correlation of ADIPOQ Gene Single Nucleotide Polymorphisms with Bone Strength Index in Middle-Aged and the Elderly of Guangxi Mulam Ethnic Group. International Journal of Environmental Research and Public Health, 2021, 18, 13034.	1.2	1
690	Amyloid Beta Peptide-Mediated Alterations in Mitochondrial Dynamics and its Implications for Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2023, 22, 1039-1056.	0.8	1
691	A Golden Anniversary for the National Institute of Environmental Health Sciences. Toxicological Sciences, 2016, 154, 200-201.	1.4	0
692	Enthusiasm Scientifically Oriented: The Preface for the Special Issue Dedicated to Jan Albrecht. Neurochemical Research, 2017, 42, 711-712.	1.6	0
693	Editorial. Regulatory Toxicology and Pharmacology, 2019, 101, A1-A2.	1.3	0
694	Pervasive, Unsafe Exposures to Mercury and Fluoride, Developmental Toxicants that Are Biologically Plausible Causal Agents in the Jaw Epidemic. BioScience, 0, , .	2.2	0
695	Manganese Neurotoxicity. , 2021, , 1-26.		0
696	Review of current neurotoxicology biomarkers. , 2021, , 215-231.		0
697	Identification of Three Small Molecules That Can Selectively Influence Cellular Manganese Levels in a Mouse Striatal Cell Model. Molecules, 2021, 26, 1175.	1.7	0
698	Metallothioneins in Neurodegeneration. , 2003, , 307-322.		0
699	Culture Models for the Study of Amino Acid Transport and Metabolism. Neuromethods, 2011, 56, 417-430.	0.2	0
700	Manganese Transport into the Brain: Putative Mechanisms. Me, 2008, 10, 695-700.	1.0	0
701	Antioxidant properties of blirubin in the model organism,. International Journal of Neuroprotection and Neuroregeneration, 2008, 4, 252-262.	1.0	0
702	The Neuron-Glia Unit in Neuropathology: Is it a Double-Edged Sword?. No Junkan Taisha = Cerebral Blood Flow and Metabolism, 2003, 15, 95-100.	0.1	0

#	Article	IF	CITATIONS
703	and Neurodegeneration. Advances in Medicine and Biology, 2012, 44, 1-46.	0.2	0
704	Neurotoxicology: It cast a big shadow over the last 30 years and there is no sign that the sun is about to set. NeuroToxicology, 2022, 88, 102-105.	1.4	0
705	Bilirubin and Other Brain Cells. Pediatrics, 1994, 93, 155-156.	1.0	0
706	Neurotoxicology of metals. , 2022, , 445-458.		0
707	Application of Fluorescence Microscopy and Behavioral Assays to Demonstrating Neuronal Connectomes and Neurotransmitter Systems in. Neuromethods, 2021, 172, 399-426.	0.2	0
708	Effects of exposure in utero to buprenorphine on oxidative stress and apoptosis in the hippocampus of rat pups. Toxicology Reports, 2022, 9, 311-315.	1.6	0
709	Fasting Enhances the Acute Toxicity of Acrylonitrile in Mice via Induction of CYP2E1. Toxics, 2022, 10, 337.	1.6	Ο