Luis Scalvi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/364954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel. Journal of Materials Science, 2008, 43, 345-349.	1.7	61
2	Optical characteristics of Er3+–Yb3+ doped SnO2 xerogels. Journal of Alloys and Compounds, 2002, 344, 217-220.	2.8	54
3	Drude's model calculation rule on electrical transport in Sb-doped SnO2 thin films, deposited via sol–gel. Journal of Physics and Chemistry of Solids, 2006, 67, 1410-1415.	1.9	49
4	Sb doping effects and oxygen adsorption in SnO2 thin films deposited via sol-gel. Materials Research, 2003, 6, 451-456.	0.6	38
5	Electro-optical properties of Er-doped SnO2 thin films. Journal of the European Ceramic Society, 2004, 24, 1857-1860.	2.8	38
6	Poole-Frenkel effect in Er doped SnO2thin films deposited by sol-gel-dip-coating. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 301-308.	0.8	31
7	EXAFS investigation on Sb incorporation effects to electrical transport in SnO2 thin films deposited by sol–gel. Journal of the European Ceramic Society, 2007, 27, 4265-4268.	2.8	31
8	Electron scattering and effects of sources of light on photoconductivity of SnO2 coatings prepared by sol–gel. Journal of Non-Crystalline Solids, 1999, 247, 171-175.	1.5	30
9	Rare earth centers properties and electron trapping in SnO2 thin films produced by sol–gel route. Journal of Non-Crystalline Solids, 2008, 354, 4840-4845.	1.5	30
10	Memristive behavior of the SnO2/TiO2 interface deposited by sol–gel. Applied Surface Science, 2017, 410, 278-281.	3.1	29
11	Electron trapping of laser-induced carriers in Er-doped SnO2 thin films. Journal of the European Ceramic Society, 2007, 27, 3803-3806.	2.8	28
12	Transient decay of persistent photoconductivity in Al0.3Ga0.7As. Journal of Applied Physics, 1990, 68, 601-605.	1.1	23
13	Title is missing!. Journal of Sol-Gel Science and Technology, 1998, 13, 793-798.	1.1	23
14	Decay of photo-induced conductivity in Sb-doped SnO2 thin films, using monochromatic light of about bandgap energy. Applied Surface Science, 2013, 267, 164-168.	3.1	23
15	Preparation of TiO ₂ /SnO ₂ Thin Films by Sol–Gel Method and Periodic B3LYP Simulations. Journal of Physical Chemistry A, 2014, 118, 5857-5865.	1.1	23
16	Schottky emission in nanoscopically crystallized Ce-doped SnO2 thin films deposited by sol–gel-dip-coating. Thin Solid Films, 2008, 517, 976-981.	0.8	22
17	Nanoparticle characterization of Er-doped SnO2 pellets obtained with different pH of colloidal suspension. Journal of Applied Physics, 2013, 114, .	1.1	22
18	Deposition and characterization of BiVO4 thin films and evaluation as photoanodes for methylene blue degradation. Journal of Solid State Electrochemistry, 2012, 16, 3267-3274.	1.2	20

Luis Scalvi

#	Article	IF	CITATIONS
19	Annealing temperature influence on sol-gel processed zirconium oxide thin films for electronic applications. Ceramics International, 2018, 44, 10790-10796.	2.3	20
20	Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films. Materials Research, 2010, 13, 437-443.	0.6	19
21	Decay of photo-excited conductivity of Er-doped SnO2 thin films. Journal of Materials Science, 2007, 42, 2216-2221.	1.7	18
22	Photoelectrochemical properties of FTO/m-BiVO4 electrode in different electrolytes solutions under visible light irradiation. Ionics, 2014, 20, 105-113.	1.2	18
23	Effect of pH of colloidal suspension on crystallization and activation energy of deep levels in SnO2 thin films obtained via sol–gel. Journal of Physics and Chemistry of Solids, 2009, 70, 1312-1316.	1.9	17
24	Dip-coating deposition of BiVO4/NiO p–n heterojunction thin film and efficiency for methylene blue degradation. Journal of Materials Science: Materials in Electronics, 2015, 26, 7705-7714.	1.1	17
25	Deposition of Al2O3 by resistive evaporation and thermal oxidation of Al to be applied as a transparent FET insulating layer. Ceramics International, 2014, 40, 3785-3791.	2.3	16
26	Interface Formation and Electrical Transport in SnO2:Eu3+/GaAs Heterojunction Deposited by Sol–Gel Dip-Coating and Resistive Evaporation. Journal of Electronic Materials, 2010, 39, 1170-1176.	1.0	15
27	Structural Characterization of Nanocrystalline Sb-Doped SnO ₂ Xerogels by Multiedge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 19206-19213.	1.5	15
28	Interface formation of nanostructured heterojunction SnO2:Eu/GaAs and electronic transport properties. Applied Surface Science, 2013, 267, 200-205.	3.1	15
29	Ultraviolet excitation of photoconductivity in thin films of sol–gel SnO2. Journal of the European Ceramic Society, 2005, 25, 2825-2828.	2.8	14
30	Numerical simulation of the liquid phase in SnO2 thin film deposition by sol-gel-dip-coating. Journal of Sol-Gel Science and Technology, 2010, 55, 385-393.	1.1	14
31	Growth of Al2O3 thin film by oxidation of resistively evaporated Al on top of SnO2, and electrical properties of the heterojunction SnO2/Al2O3. Journal of Materials Science, 2011, 46, 6627-6632.	1.7	13
32	Annealing effects on optical properties of natural alexandrite. Journal of Physics Condensed Matter, 2003, 15, 7437-7443.	0.7	12
33	Influence of pH of colloidal suspension on the electrical conductivity of SnO2 thin films deposited via Sol-Gel-Dip-Coating. Materials Research, 2011, 14, 113-117.	0.6	12
34	Transient decay of photoinduced current in semiconductors and heterostructures. Journal Physics D: Applied Physics, 2020, 53, 033001.	1.3	12
35	Improved electrical transport in lightly Er-doped sol–gel spin-coating SnO2 thin films, processed by photolithography. Applied Physics A: Materials Science and Processing, 2015, 118, 1419-1427.	1.1	11
36	Emission Properties Related to Distinct Phases of Sol-Gel Dip-Coating Titanium Dioxide, and Carrier Photo-Excitation in Different Energy Ranges. Materials Research, 2017, 20, 866-873.	0.6	11

#	Article	IF	CITATIONS
37	Generation and Propagation of Superhigh-Frequency Bulk Acoustic Waves in GaAs. Physical Review Applied, 2019, 12, .	1.5	11
38	Cr+3 Distribution in Al1 and Al2 Sites of Alexandrite (BeAl2O4: Cr3+) Induced by Annealing, Investigated by Optical Spectroscopy. Energy and Power Engineering, 2010, 02, 18-24.	0.5	11
39	Heterojunction between Al2O3 and SnO2 thin films for application in transparent FET. Materials Research, 2014, 17, 1420-1426.	0.6	10
40	Visible emission from Er-doped SnO2 thin films deposited by sol-gel. Ceramica, 2007, 53, 187-191.	0.3	9
41	Raman and photoluminescence of Er3+-doped SnO2 obtained via the sol–gel technique from solutions with distinct pH. Optical Materials, 2010, 33, 66-70.	1.7	9
42	Er rare-earth ion incorporation in sol-gel SnO2. Materials Research, 2003, 6, 445-449.	0.6	8
43	Analysis of Er3+ incorporation in SnO2 by optical investigation. Brazilian Journal of Physics, 2006, 36, 270-273.	0.7	8
44	Optical emission and electron capture of rare-earth trivalent ions located at distinct sites in <mml:math <br="" altimg="si1.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:misub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>SnO</mml:mi></mml:mstyle </mml:mrow><mml:mrow><mml:mn>2why file place because the second second</mml:mn></mml:mrow></mml:misub></mml:math>	1.2 mn> <td>8 mrow></td>	8 mrow>
45	Thin films. Physics Procedia, 2009, 2, 353-364. On the photo-induced electrical conduction related to gas sensing of the Sb:SnO2/TiO2 heterostructure. Sensors and Actuators A: Physical, 2018, 281, 250-257.	2.0	8
46	Influence of thermal annealing on the properties of evaporated Er-doped SnO2. Materials Research Bulletin, 2019, 120, 110585.	2.7	8
47	Thermal annealing-induced electric dipole relaxation in natural alexandrite. Physics and Chemistry of Minerals, 2005, 31, 733-737.	0.3	7
48	Luminescence of Eu^3+ in the thin film heterojunction GaAs/SnO_2. Optical Materials Express, 2015, 5, 59.	1.6	7
49	On the electrical properties of distinct Eu3+ emission centers in the heterojunction GaAs/SnO2. Thin Solid Films, 2016, 612, 303-309.	0.8	7
50	Deposition of TiO2 thin Films by Dip-Coating Technique from a Two-Phase Solution Method and Application to Photocatalysis. Materials Research, 2021, 24, .	0.6	7
51	Effects of Solution History on Solâ€Gel Processed Tinâ€Oxide Thinâ€Film Transistors. Journal of the American Ceramic Society, 2016, 99, 4000-4006.	1.9	6
52	Ambipolar transport in tin dioxide thin film transistors promoted by PCBM fullerene. Journal of Materials Science: Materials in Electronics, 2018, 29, 20010-20016.	1.1	6
53	Influence of Pb2+ doping in the optical and electro-optical properties of SnO2 thin films. Materials Chemistry and Physics, 2022, 278, 125571.	2.0	6
54	Deposition and photo-induced electrical resistivity of dip-coated NiO thin films from a precipitation process. Journal of Materials Science: Materials in Electronics, 2013, 24, 1823-1831.	1.1	5

#	Article	IF	CITATIONS
55	Electron trapping in the photo-induced conductivity decay in GaAs/SnO2 heterostructure. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	5
56	X-ray absorption spectroscopy and Eu3+-emission characteristics in GaAs/SnO2 heterostructure. SN Applied Sciences, 2020, 2, 1.	1.5	5
57	Light-induced relaxing dipoles inn-typeAlxGa1â^'xAs. Physical Review B, 1995, 51, 13864-13867.	1.1	4
58	Photodesorption and electron trapping in n-type SnO ₂ thin films grown by dip-coating technique. Radiation Effects and Defects in Solids, 1998, 146, 199-206.	0.4	4
59	Light-induced electric dipole relaxation in synthetic and natural alexandrite. Radiation Effects and Defects in Solids, 2001, 156, 295-299.	0.4	4
60	Planar Waveguides Based on Nanocrystalline and Er ³⁺ Doped SnO ₂ . Journal of Metastable and Nanocrystalline Materials, 2002, 14, 107-110.	0.1	4
61	A continuously differentiable upwinding scheme for the simulation of fluid flow problems. Applied Mathematics and Computation, 2012, 218, 8614-8633.	1.4	4
62	Photoelectrochemical properties of FTO/p-NiO electrode induced by UV light irradiation. Ionics, 2015, 21, 1407-1415.	1.2	4
63	Dip-coating deposition of resistive BiVO4 thin film and evaluation of their photoelectrochemical parameters under distinct sources illumination. Journal of Solid State Electrochemistry, 2016, 20, 1527-1538.	1.2	4
64	Investigation of sensing properties of sol–gel processed 4Âat%Sb:SnO2/TiO2 thin films. Journal of Materials Science: Materials in Electronics, 2018, 29, 467-473.	1.1	4
65	Thermal Annealing Influence on the Properties of Heterostructure Based on 2Âat.%Eu Doped SnO2 and Cu1.8S. Journal of Electronic Materials, 2018, 47, 7463-7471.	1.0	4
66	Enhancement of surface properties of sol gel tin dioxide thin films with addition of surfactant in the precursor solution. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	4
67	Dipole relaxation current innâ€ŧype AlxGa1â^'xAs. Applied Physics Letters, 1993, 63, 2658-2660.	1.5	3
68	Oxygen related defects excitation and photoconductivity dependence of SnO ₂ Sol-Gel films with several light sources. Radiation Effects and Defects in Solids, 1999, 150, 391-395.	0.4	3
69	Characterization of metallic electrical contacts to SnO2 thin films lightly doped with Eu3+ ions, and photo-induced resistivity. Materials Chemistry and Physics, 2012, 134, 994-1000.	2.0	3
70	Photo-Induced conductivity of heterojunction GaAs/Rare-Earth doped SnO2. Materials Research, 2013, 16, 831-838.	0.6	3
71	Interface conduction and photo-induced electrical transport in the heterojunction formed by GaAs and Ce3+-doped SnO2. Journal of Materials Science: Materials in Electronics, 2017, 28, 5415-5424.	1.1	3
72	Photoluminescence of Rare-Earth Ions in the Nanocrystalline GaAs/SnO2 Heterostructure and the Photoinduced Electrical Properties Related to the Interface. Condensed Matter, 2017, 2, 9.	0.8	3

#	Article	IF	CITATIONS
73	Low-temperature ZrO2 thin films obtained by polymeric route for electronic applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 16065-16072.	1.1	3
74	Photo-induced electron trapping in indirect bandgap at low temperature. Journal of Physics Condensed Matter, 1999, 11, 425-433.	0.7	2
75	Photoconductivity excitation spectrum for stretch-oriented PPV. Synthetic Metals, 2005, 154, 77-80.	2.1	2
76	Photo-induced dipole relaxation current in natural Amethyst. Materials Research, 2012, 15, 461-466.	0.6	2
77	Anomalous diode behavior of Cu2S/SnO2 p–n junction. Journal of Materials Science: Materials in Electronics, 2021, 32, 21804-21812.	1.1	2
78	Deposition of hybrid structures of reduced graphene oxide and tin dioxide thin films, and persistent photoconductivity observation. Current Applied Physics, 2022, 41, 49-58.	1.1	2
79	Zirconium oxide film deposition properties to build transparent electronic devices in conjunction with tin dioxide. International Journal of Modern Physics B, 2022, 36, .	1.0	2
80	Substitutional donor related states and Au/Ge/Ni contacts to AlxGa1â^'xAs. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 68, 727-735.	0.6	1
81	Dipole Relaxation Current in N-Type AlxGa1-xAs. Materials Research Society Symposia Proceedings, 1993, 325, 285.	0.1	1
82	Investigation of temperature influence on photo-induced conductivity in n-type AlxGa1â^'xAs. Radiation Effects and Defects in Solids, 1998, 146, 175-186.	0.4	1
83	Contribution of oxygen related defects to the electronic transport in SnO2sol-gel films. Radiation Effects and Defects in Solids, 2001, 156, 145-149.	0.4	1
84	Planar Waveguides Based on Nanocrystalline and Er ³⁺ Doped SnO ₂ . Materials Science Forum, 2002, 403, 107-110.	0.3	1
85	Determinação de diagramas de bandas de energia e da borda de absorção em SnO2, depositado via sol-gel, sobre quartzo. Ceramica, 2009, 55, 88-93.	0.3	1
86	Al ₂ O ₃ Obtained through Resistive Evaporation for Use as Insulating Layer in Transparent Field Effect Transistor. Advanced Materials Research, 2014, 975, 248-253.	0.3	1
87	Influence of substrate temperature on the deposition of the homostructure SnO ₂ :Sb/SnO ₂ :Er via sol–gel dip-coating. Ferroelectrics, 2019, 545, 10-21.	0.3	1
88	A dynamic time-temperature-dependent process for thermal oxidation of Sn leading to SnOx thin films: Impedance spectroscopy study. International Journal of Modern Physics B, 2020, 34, 2050184.	1.0	1
89	Anatase–Rutile Transition and Photo-Induced Conductivity of Highly Yb-Doped TiO2 Films Deposited by Acid Sol–Gel Dip-Coating Method. Journal of Electronic Materials, 2020, 49, 6369-6379.	1.0	1
90	Synthesis and Characterization of Cu2-xS structures by Different Chemical Routes for Electronic Applications. Materials Research, 2021, 24, .	0.6	1

Luis Scalvi

#	Article	IF	CITATIONS
91	Subband mixing inducing negative resistance. Solid State Communications, 1993, 86, 301-304.	0.9	0
92	Powder Diffraction of Components Subject to Corrosion in Fuse Cutouts with Ceramic Insulation. Materials Science Forum, 2008, 591-593, 548-553.	0.3	0
93	Optical excitation of charge carriers from intra-bandgap states in Ce-doped SnO[sub 2] thin films. AIP Conference Proceedings, 2008, , .	0.3	0
94	A Theoretical Analysis of Sb ⁵⁺ Incorporation in Highly Doped SnO ₂ Matrix. Current Physical Chemistry, 2014, 4, 15-20.	0.1	0
95	Nanostructured TiO ₂ -Based Composites for Light Absorption. Advanced Materials Research, 0, 975, 207-212.	0.3	0
96	Investigation of Photoinduced Electrical Properties in the Heterojunction TiO ₂ /SnO ₂ . Advanced Materials Research, 0, 975, 201-206.	0.3	0
97	Photo-induced electrical behavior under gas adsorption on SnO2 -based heterostructures. Materials Chemistry and Physics, 2020, 255, 123510.	2.0	0
98	Resistividade do filme depositado via sol-gel e estado de oxidação do dopante Ce na matriz SnO2. Ceramica, 2011, 57, 225-230.	0.3	0