
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3649530/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Research, 2022, 15, 972-977.	10.4	98
2	Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Research, 2022, 15, 1039-1046.	10.4	74
3	Ni2P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions. Journal of Colloid and Interface Science, 2022, 606, 1055-1063.	9.4	62
4	Exploring the high-temperature steam oxidation behaviors of the lean-Cr (7–10Âwt%) FeCrAl alloys. Corrosion Science, 2022, 194, 109927.	6.6	19
5	Development of biomedical Ti-Nb-Zr-Mn alloys with enhanced mechanical properties and corrosion resistance. Materials Today Communications, 2022, 30, 103027.	1.9	10
6	Urchin-liked FexCo1-x/CoOOH/FeOOH nanoparticles for highly efficient oxygen evolution reaction. Applied Surface Science, 2022, 577, 151830.	6.1	11
7	Ni75Cu25O polyhedron material derived from nickel-copper oxalate as high-performance electrocatalyst for glucose oxidation. Composites Communications, 2022, 29, 100999.	6.3	4
8	Multidimensional VO2 nanotubes/Ti3C2 MXene composite for efficient electrochemical lithium/sodium-ion storage. Journal of Power Sources, 2022, 521, 230946.	7.8	14
9	High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Materials Today Physics, 2022, 23, 100619.	6.0	72
10	Boosting electrochemical nitrite–ammonia conversion properties by a Cu foam@Cu ₂ O catalyst. Chemical Communications, 2022, 58, 517-520.	4.1	32
11	Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion. Journal of Colloid and Interface Science, 2022, 615, 636-642.	9.4	67
12	Facile synthesis of self support Fe doped Ni3S2 nanosheet arrays for high performance alkaline oxygen evolution. Journal of Electroanalytical Chemistry, 2022, 907, 116047.	3.8	6
13	Ambient Ammonia Synthesis via Electrochemical Reduction of Nitrate Enabled by NiCo ₂ O ₄ Nanowire Array. Small, 2022, 18, e2106961.	10.0	171
14	High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chemical Engineering Journal, 2022, 435, 135104.	12.7	71
15	In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Research, 2022, 15, 3050-3055.	10.4	108
16	A TiO _{2â^'<i>x</i>} nanobelt array with oxygen vacancies: an efficient electrocatalyst toward nitrite conversion to ammonia. Chemical Communications, 2022, 58, 3669-3672.	4.1	55
17	Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Research, 2022, 15, 4942-4949.	10.4	26
18	Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Research, 2022, 15, 5032-5037.	10.4	32

#	Article	IF	CITATIONS
19	Electrodeposition of Amorphous Feâ^'P Shell on Co(OH)F Nanowire Arrays for Boosting Oxygen Evolution Electrocatalysis in Alkaline Media. ChemNanoMat, 2022, 8, .	2.8	3
20	High-Performance Electrochemical Nitrate Reduction to Ammonia under Ambient Conditions Using a FeOOH Nanorod Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 17312-17318.	8.0	58
21	Rapid screening of NixFe1â^x/Fe2O3/Ni(OH)2 complexes with excellent oxygen evolution reaction activity and durability by a two-step electrodeposition method. Applied Surface Science, 2022, 592, 153251.	6.1	9
22	Exceptional Photocatalytic Activities of rGO Modified (B,N) Coâ€Doped WO ₃ , Coupled with CdSe QDs for One Photon Zâ€5cheme System: A Joint Experimental and DFT Study. Advanced Science, 2022, 9, e2102530.	11.2	52
23	A Singleâ€Layer Composite Separator with 3Dâ€Reinforced Microstructure for Practical Highâ€Temperature Lithium Ion Batteries. Small, 2022, 18, e2107664.	10.0	10
24	Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. Journal of Colloid and Interface Science, 2022, 623, 513-519.	9.4	71
25	Accelerating CO2 reduction on novel double perovskite oxide with sulfur, carbon incorporation: Synergistic electronic and chemical engineering. Chemical Engineering Journal, 2022, 446, 137161.	12.7	34
26	Cu nanoparticles decorated juncus-derived carbon for efficient electrocatalytic nitrite-to-ammonia conversion. Journal of Colloid and Interface Science, 2022, 624, 394-399.	9.4	39
27	High-performance electrochemical nitrate reduction to ammonia under ambient conditions using NiFe ₂ O ₄ nanosheet arrays. Inorganic Chemistry Frontiers, 2022, 9, 3392-3397.	6.0	25
28	Moâ€Doped Sulfurâ€Vacancyâ€Rich V _{1.11} S ₂ Nanosheets for Efficient Hydrogen Evolution. ChemistrySelect, 2022, 7, .	1.5	1
29	Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Research, 2022, 15, 7134-7138.	10.4	72
30	Enhanced electrocatalytic nitrate reduction to ammonia using plasmaâ€induced oxygen vacancies in CoTiO _{3 â~` <i>x</i>} nanofiber. , 2022, 1, 6-13.		13
31	High-Efficiency Electrosynthesis of Ammonia with Selective Reduction of Nitrate in Neutral Media Enabled by Self-Supported Mn ₂ CoO ₄ Nanoarray. ACS Applied Materials & Interfaces, 2022, 14, 33242-33247.	8.0	27
32	Design of heterojunction with components in different dimensions for electrocatalysis applications. Frontiers of Physics, 2022, 17, .	5.0	2
33	ZrO ₂ /C Nanosphere Enables Highâ€Efficiency Nitrogen Reduction to Ammonia at Ambient Conditions. ChemCatChem, 2022, 14, .	3.7	3
34	CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H ₂ O ₂ electrosynthesis in acidic media. Journal of Materials Chemistry A, 2021, 9, 21703-21707.	10.3	29
35	High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt–phosphorus alloy film. Chemical Communications, 2021, 57, 9720-9723.	4.1	58
36	Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. Journal of Materials Chemistry A, 2021, 9, 11879-11907.	10.3	102

#	Article	IF	CITATIONS
37	Ni _{<i>x</i>} Cu _{1â^²<i>x</i>} /CuO/Ni(OH) ₂ as highly active and stable electrocatalysts for oxygen evolution reaction. New Journal of Chemistry, 2021, 45, 18482-18490.	2.8	14
38	N/O double-doped biomass hard carbon material realizes fast and stable potassium ion storage. Carbon, 2021, 176, 71-82.	10.3	105
39	Fabrication of ultrafine grained FeCrAl-0.6Âwt.% ZrC alloys with enhanced mechanical properties by spark plasma sintering. Advanced Powder Technology, 2021, 32, 1380-1389.	4.1	28
40	Directionally Tailoring Macroporous Honeycomb-Like Structured Carbon Nanofibers toward High-Capacitive Potassium Storage. ACS Applied Materials & Interfaces, 2021, 13, 30693-30702.	8.0	25
41	A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure an hydrogen evolution performance. Frontiers of Physics, 2021, 16, 1.	5.0	12
42	Ti ₂ O ₃ Nanoparticles with Ti ³⁺ Sites toward Efficient NH ₃ Electrosynthesis under Ambient Conditions. ACS Applied Materials & Interfaces, 2021, 13, 41715-41722.	8.0	89
43	Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Current Opinion in Electrochemistry, 2021, 29, 100766.	4.8	147
44	Reduced graphene oxide supported ZIF-67 derived CoP enables high-performance potassium ion storage. Journal of Colloid and Interface Science, 2021, 604, 319-326.	9.4	32
45	Caged biomass carbon with anchoring MoO2/NC Nanospheres: Synergistic enhancement of potassium ion storage and electrochemical performance. Applied Surface Science, 2021, 569, 150984.	6.1	33
46	A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3007-3011.	6.0	143
47	Alkylthiol surface engineering: an effective strategy toward enhanced electrocatalytic N ₂ -to-NH ₃ fixation by a CoP nanoarray. Journal of Materials Chemistry A, 2021, 9, 13861-13866.	10.3	83
48	Significantly enhanced oxygen evolution reaction performance by tuning surface states of Co through Cu modification in alloy structure. Journal of Electroanalytical Chemistry, 2021, 903, 115823.	3.8	8
49	Promoting the Oxygen Evolution Activity of Perovskite Nickelates through Phase Engineering. ACS Applied Materials & Interfaces, 2021, 13, 58566-58575.	8.0	30
50	High-performance NH ₃ production <i>via</i> NO electroreduction over a NiO nanosheet array. Chemical Communications, 2021, 57, 13562-13565.	4.1	51
51	Low-temperature hydrogen release through LiAlH4 and NH4F react in Et2O. International Journal of Hydrogen Energy, 2020, 45, 8774-8782.	7.1	4
52	FeCoNi Ternary Spinel Oxides Nanosheets as High Performance Water Oxidation Electrocatalyst. ChemCatChem, 2020, 12, 2209-2214.	3.7	10
53	Characterization and corrosion behaviour of Ti-13Nb-13Zr alloy prepared by mechanical alloying and spark plasma sintering. Materials Today Communications, 2020, 23, 101130.	1.9	17
54	One-step hydrothermal synthesis and characterization of Cu-doped TiO2 nanoparticles/nanobucks/nanorods with enhanced photocatalytic performance under simulated solar light. Journal of Materials Science: Materials in Electronics, 2019, 30, 13826-13834.	2.2	24

#	Article	IF	CITATIONS
55	Hybrid Amorphous/Crystalline FeNi (Oxy) Hydroxide Nanosheets for Enhanced Oxygen Evolution. ChemCatChem, 2019, 11, 3004-3009.	3.7	12
56	Preparation and characterisation of Ag modified rutile titanium dioxide and its photocatalytic activity under simulated solar light. Micro and Nano Letters, 2019, 14, 757-760.	1.3	4
57	Hydrothermal Synthesis of Nanoporous NiO Rods Self-Supported on Ni Foam as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Jom, 2019, 71, 621-625.	1.9	14
58	The effect of heat treatment on the anatase–rutile phase transformation and photocatalytic activity of Sn-doped TiO ₂ nanomaterials. RSC Advances, 2018, 8, 14249-14257.	3.6	32
59	Controllable fabrication of bulk hierarchical nanoporous palladium by chemical dealloying at various temperature and its thermal coarsening. Journal of Porous Materials, 2018, 25, 555-563.	2.6	3
60	Morphology-Controlled Synthesis of Co3O4 Materials and its Electrochemical Catalytic Properties Towards Oxygen Evolution Reaction. Catalysis Letters, 2018, 148, 3771-3778.	2.6	12
61	Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces. Beilstein Journal of Nanotechnology, 2018, 9, 2526-2532.	2.8	12
62	Characterization and Thermal Stability Properties of Bulk Hierarchical Porous Pd Prepared by Kirkendall Effect and Dealloying Method. Journal of Nanomaterials, 2018, 2018, 1-7.	2.7	2
63	Influence of Hydrogen Sulfide and Redox Reactions on the Surface Properties and Hydrogen Permeability of Pd Membranes. Energies, 2018, 11, 1127.	3.1	9
64	Effect of Spark Plasma Sintering on the Structure and Compressive Strength of Porous Nickel. Powder Metallurgy and Metal Ceramics, 2018, 57, 154-160.	0.8	3
65	SiS nanosheets as a promising anode material for Li-ion batteries: a computational study. Physical Chemistry Chemical Physics, 2017, 19, 8563-8567.	2.8	11
66	Fabrication, characterization and electrochemical properties of porous palladium bulk samples with high porosity and hierarchical pore structure. Chinese Journal of Catalysis, 2017, 38, 1038-1044.	14.0	2
67	Fabrication and characterization of bulk nanoporous Cu with hierarchical pore structure. Journal of Materials Science, 2017, 52, 12445-12454.	3.7	6
68	Controlled synthesis of monodisperse silica particles. Micro and Nano Letters, 2016, 11, 532-534.	1.3	5
69	Influence of High-Temperature Water Vapor on Titanium Film Surface. Oxidation of Metals, 2016, 86, 179-192.	2.1	5
70	Hydrogen absorption/desorption properties of porous hollow palladium spheres prepared by templating method. Journal of Alloys and Compounds, 2016, 664, 188-192.	5.5	14
71	Bulk hierarchical nanoporous palladium prepared by dealloying PdAl alloys and its electrochemical properties. Microporous and Mesoporous Materials, 2015, 208, 152-159.	4.4	28
72	Fabrication, characterization and electrochemical properties of porous hollow palladium spheres. Journal of Alloys and Compounds, 2015, 632, 701-706.	5.5	11

#	Article	IF	CITATIONS
73	Fabrication and Characterization of Nanocrystalline Al–Cu Alloy by Spark Plasma Sintering. Materials and Manufacturing Processes, 2014, 29, 1232-1236.	4.7	11
74	Fabrication and compression properties of bulk hierarchical nanoporous copper with fine ligament. Materials Letters, 2014, 127, 59-62.	2.6	23
75	Hierarchical porous copper materials: fabrication and characterisation. Micro and Nano Letters, 2013, 8, 432-435.	1.3	13