
Johan Hansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3649459/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coexpression of MTH1 and PMS2 Is Associated with Advanced Disease and Disease Progression after Therapy in Melanoma. Journal of Investigative Dermatology, 2022, 142, 736-740.e6.	0.3	4
2	A biomarker panel predicts recurrence-free survival in ulcerated primary cutaneous melanoma. Acta Oncológica, 2022, 61, 14-21.	0.8	1
3	Birth cohort-specific trends of sun-related behaviors among individuals from an international consortium of melanoma-prone families. BMC Public Health, 2021, 21, 692.	1.2	4
4	PTENP1-AS contributes to BRAF inhibitor resistance and is associated with adverse clinical outcome in stage III melanoma. Scientific Reports, 2021, 11, 11023.	1.6	6
5	Predicting anti-PD-1 responders in malignant melanoma from the frequency of S100A9+ monocytes in the blood. , 2021, 9, e002171.		12
6	AXL and CAV-1 play a role for MTH1 inhibitor TH1579 sensitivity in cutaneous malignant melanoma. Cell Death and Differentiation, 2020, 27, 2081-2098.	5.0	20
7	Inhibiting insulin and mTOR signaling by afatinib and crizotinib combination fosters broad cytotoxic effects in cutaneous malignant melanoma. Cell Death and Disease, 2020, 11, 882.	2.7	10
8	Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant, metastasized melanoma treated with adoptive T cell transfer combined with DC vaccination. Oncolmmunology, 2020, 9, 1792058.	2.1	30
9	Silencing of CEBPB-AS1 modulates CEBPB expression and resensitizes BRAF-inhibitor resistant melanoma cells to vemurafenib. Melanoma Research, 2020, 30, 443-454.	0.6	4
10	PD-1 checkpoint blockade in advanced melanoma patients: NK cells, monocytic subsets and host PD-L1 expression as predictive biomarker candidates. OncoImmunology, 2020, 9, 1786888.	2.1	29
11	Immunometabolic Network Interactions of the Kynurenine Pathway in Cutaneous Malignant Melanoma. Frontiers in Oncology, 2020, 10, 51.	1.3	5
12	High expression of ID1 in monocytes is strongly associated with phenotypic and functional MDSC markers in advanced melanoma. Cancer Immunology, Immunotherapy, 2020, 69, 513-522.	2.0	6
13	Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nature Genetics, 2020, 52, 494-504.	9.4	138
14	Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT. Journal of the American Academy of Dermatology, 2019, 81, 386-394.	0.6	17
15	Combining ERBB family and MET inhibitors is an effective therapeutic strategy in cutaneous malignant melanoma independent of BRAF/NRAS mutation status. Cell Death and Disease, 2019, 10, 663.	2.7	16
16	Cancer Neoepitopes for Immunotherapy: Discordance Between Tumor-Infiltrating T Cell Reactivity and Tumor MHC Peptidome Display. Frontiers in Immunology, 2019, 10, 2766.	2.2	23
17	Targeting <scp>CDK</scp> 2 overcomes melanoma resistance against <scp>BRAF</scp> and Hsp90 inhibitors. Molecular Systems Biology, 2018, 14, e7858.	3.2	53
18	Urinary Bladder Cancer Tregs Suppress MMP2 and Potentially Regulate Invasiveness. Cancer Immunology Research, 2018, 6, 528-538.	1.6	45

Johan Hansson

#	Article	IF	CITATIONS
19	Extracellular microvesicle microRNAs as predictive biomarkers for targeted therapy in metastastic cutaneous malignant melanoma. PLoS ONE, 2018, 13, e0206942.	1.1	35
20	Spatially Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage III Cutaneous Malignant Melanoma. Cancer Research, 2018, 78, 5970-5979.	0.4	236
21	Simple and cost-effective liquid chromatography-mass spectrometry method to measure dabrafenib quantitatively and six metabolites semi-quantitatively in human plasma. Analytical and Bioanalytical Chemistry, 2017, 409, 3749-3756.	1.9	8
22	Primary tumor sites in relation to ultraviolet radiation exposure and skin visibility correlate with survival in cutaneous melanoma. International Journal of Cancer, 2017, 141, 1345-1354.	2.3	8
23	Germline Variation at CDKN2A and Associations with Nevus Phenotypes amongÂMembers of Melanoma Families. Journal of Investigative Dermatology, 2017, 137, 2606-2612.	0.3	18
24	ΔNp73 regulates the expression of the multidrug-resistance genes ABCB1 and ABCB5 in breast cancer and melanoma cells - a short report. Cellular Oncology (Dordrecht), 2017, 40, 631-638.	2.1	14
25	Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells. Cell Death and Disease, 2017, 8, e3029-e3029.	2.7	35
26	Presence of immune cells, low tumor proliferation and wild type BRAF mutation status is associated with a favourable clinical outcome in stage III cutaneous melanoma. BMC Cancer, 2017, 17, 584.	1.1	11
27	Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget, 2017, 8, 21539-21553.	0.8	103
28	Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe – a systematic review of the literature. Clinical Epidemiology, 2016, 8, 109.	1.5	91
29	Prognostic factors and disease-specific survival among immigrants diagnosed with cutaneous malignant melanoma in Sweden. International Journal of Cancer, 2016, 139, 543-553.	2.3	11
30	Epidemiology of cutaneous melanoma in Sweden—Stageâ€specific survival and rate of recurrence. International Journal of Cancer, 2016, 139, 2722-2729.	2.3	49
31	Novel rapid liquid chromatography tandem masspectrometry method for vemurafenib and metabolites in human plasma, including metabolite concentrations at steady state. Biomedical Chromatography, 2016, 30, 1234-1239.	0.8	6
32	The role of germline alterations in the DNA damage response genes <i>BRIP1</i> and <i>BRCA2</i> in melanoma susceptibility. Genes Chromosomes and Cancer, 2016, 55, 601-611.	1.5	13
33	Phenotypic and Histopathological Tumor Characteristics According to CDKN2A Mutation Status among Affected Members ofAMelanoma Families. Journal of Investigative Dermatology, 2016, 136, 1066-1069.	0.3	13
34	Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nature Genetics, 2015, 47, 987-995.	9.4	218
35	Short-term Results of a Magnetic Resonance Imaging–Based Swedish Screening Program for Individuals at Risk for Pancreatic Cancer. JAMA Surgery, 2015, 150, 512.	2.2	83
36	BRAFV600EProtein Expression in Primary Cutaneous Malignant Melanomas and Paired Metastases. JAMA Dermatology, 2015, 151, 410.	2.0	27

Johan Hansson

#	Article	IF	CITATIONS
37	Somatic BRAF and NRAS Mutations in Familial Melanomas with Known Germline CDKN2A Status: A GenoMEL Study. Journal of Investigative Dermatology, 2014, 134, 287-290.	0.3	18
38	Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biology, 2014, 38, 69-83.	1.5	53
39	High risk of tobacco-related cancers in <i>CDKN2A</i> mutation-positive melanoma families. Journal of Medical Genetics, 2014, 51, 545-552.	1.5	73
40	Primary Melanoma Tumors from CDKN2A Mutation Carriers Do Not Belong to a Distinct Molecular Subclass. Journal of Investigative Dermatology, 2014, 134, 3000-3003.	0.3	8
41	Investigation of a putative melanoma susceptibility locus at chromosome 3q29. Cancer Genetics, 2014, 207, 70-74.	0.2	3
42	Estimating the cure proportion of malignant melanoma, an alternative approach to assess long term survival: A population-based study. Cancer Epidemiology, 2014, 38, 93-99.	0.8	20
43	An open-label, multicenter safety study of vemurafenib (PLX4032, RO5185426) in patients with metastatic melanoma Journal of Clinical Oncology, 2012, 30, 8517-8517.	0.8	11
44	KIT, NRAS, BRAF, and PTEN alterations in acral lentiginous melanomas Journal of Clinical Oncology, 2012, 30, 8588-8588.	0.8	1
45	Two different durations of adjuvant therapy with intermediate-dose interferon alfa-2b in patients with high-risk melanoma (Nordic IFN trial): a randomised phase 3 trial. Lancet Oncology, The, 2011, 12, 144-152.	5.1	93
46	Familial Cutaneous Melanoma. Advances in Experimental Medicine and Biology, 2010, 685, 134-145.	0.8	41
47	Lack of Cytoplasmic ERK Activation Is an Independent Adverse Prognostic Factor in Primary Cutaneous Melanoma. Journal of Investigative Dermatology, 2008, 128, 2696-2704.	0.3	34
48	Familial Melanoma. Surgical Clinics of North America, 2008, 88, 897-916.	0.5	22