
Lan Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3649015/publications.pdf Version: 2024-02-01

Ι ΑΝΙ ΧΑΝΙ

#	Article	IF	CITATIONS
1	The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors. Frontiers in Microbiology, 2019, 10, 691.	1.5	120
2	The synthesis, regulation, and functions of sterols in <i>Candida albicans</i> : Well-known but still lots to learn. Virulence, 2016, 7, 649-659.	1.8	92
3	The alternative oxidase of Candida albicans causes reduced fluconazole susceptibility. Journal of Antimicrobial Chemotherapy, 2009, 64, 764-773.	1.3	74
4	Synergistic Antifungal Effect of Glabridin and Fluconazole. PLoS ONE, 2014, 9, e103442.	1.1	66
5	Proteomic Analysis Reveals a Metabolism Shift in a Laboratory Fluconazole-ResistantCandida albicansStrain. Journal of Proteome Research, 2007, 6, 2248-2256.	1.8	40
6	Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity. PLoS Pathogens, 2016, 12, e1005617.	2.1	40
7	Dectin-1 plays an important role in host defense against systemic Candida glabrata infection. Virulence, 2017, 8, 1643-1656.	1.8	35
8	Potent Activities of Roemerine against Candida albicans and the Underlying Mechanisms. Molecules, 2015, 20, 17913-17928.	1.7	32
9	DNA microarray analysis of fluconazole resistance in a laboratory <italic>Candida albicans</italic> strain. Acta Biochimica Et Biophysica Sinica, 2008, 40, 1048-1060.	0.9	28
10	The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections. Vaccine, 2017, 35, 5786-5793.	1.7	28
11	The Synergism of the Small Molecule ENOblock and Fluconazole Against Fluconazole-Resistant Candida albicans. Frontiers in Microbiology, 2019, 10, 2071.	1.5	24
12	Design, synthesis, and anticancer activity of novel berberine derivatives prepared via CuAAC "click" chemistry as potential anticancer agents. Drug Design, Development and Therapy, 2014, 8, 1047.	2.0	23
13	Trisomy of chromosome R confers resistance to triazoles in Candida albicans. Medical Mycology, 2015, 53, 302-309.	0.3	23
14	The structure and retrotransposition mechanism of LTR-retrotransposons in the asexual yeast <i>Candida albicans</i> . Virulence, 2014, 5, 655-664.	1.8	22
15	Synergistic Antifungal Activity of Berberine Derivative B-7b and Fluconazole. PLoS ONE, 2015, 10, e0126393.	1.1	21
16	Abolishing Cell Wall Glycosylphosphatidylinositol-Anchored Proteins in Candida albicans Enhances Recognition by Host Dectin-1. Infection and Immunity, 2015, 83, 2694-2704.	1.0	21
17	Effect of loureirin A against Candida albicans biofilms. Chinese Journal of Natural Medicines, 2019, 17, 616-623.	0.7	19
18	Three New Phenylpropanoids from <i>Inula nervosa</i> <scp>Wall</scp> Helvetica Chimica Acta, 2010, 93, 1418-1421.	1.0	16

Lan Yan

#	Article	IF	CITATIONS
19	Molecular genetic techniques for gene manipulation inCandida albicans. Virulence, 2014, 5, 507-520.	1.8	16
20	Chemogenomic Profiling of the Fungal Pathogen Candida albicans. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	16
21	New Triazole NT-a9 Has Potent Antifungal Efficacy against Cryptococcus neoformans <i>In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	15
22	Mutations in transcription factor Mrr2p contribute to fluconazole resistance in clinical isolates of Candida albicans. International Journal of Antimicrobial Agents, 2015, 46, 552-559.	1.1	14
23	Pall domain proteins of Saccharomyces cerevisiae and Candida albicans. Microbiological Research, 2012, 167, 422-432.	2.5	11
24	Bst1 is required for Candida albicans infecting host via facilitating cell wall anchorage of Glycosylphosphatidyl inositol anchored proteins. Scientific Reports, 2016, 6, 34854.	1.6	11
25	11g, a Potent Antifungal Candidate, Enhances Candida albicans Immunogenicity by Unmasking β-Glucan in Fungal Cell Wall. Frontiers in Microbiology, 2020, 11, 1324.	1.5	10
26	NSG2 (ORF19.273) Encoding Protein Controls Sensitivity of Candida albicans to Azoles through Regulating the Synthesis of C14-Methylated Sterols. Frontiers in Microbiology, 2018, 9, 218.	1.5	8
27	Antifungal Activity of the Ethanol Extract from <i>Flos Rosae Chinensis</i> with Activity against Fluconazole-Resistant Clinical <i>Candida</i> . Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	0.5	7
28	Design, Synthesis and Antifungal Activity of Stapled Aurein1.2 Peptides. Antibiotics, 2021, 10, 956.	1.5	7
29	Structural features and mechanism of translocation of non-LTR retrotransposons in <i>Candida albicans</i> . Virulence, 2014, 5, 245-252.	1.8	6
30	Fluvirucins B ₇ –B ₁₀ , new antifungal macrolactams from a marine-derived <i>Nonomuraea</i> sp. MYH522. RSC Advances, 2022, 12, 15479-15485.	1.7	5
31	The Role of Mms22p in DNA Damage Response in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2567-2578.	0.8	4
32	The Importance of Vacuolar Ion Homeostasis and Trafficking in Hyphal Development and Virulence in Candida albicans. Frontiers in Microbiology, 2021, 12, 779176.	1.5	4
33	TOP2 gene disruption reduces drug susceptibility by increasing intracellular ergosterol biosynthesis in Candida albicans. Journal of Medical Microbiology, 2010, 59, 797-803.	0.7	3
34	InsP3R-SEC5 interaction on phagosomes modulates innate immunity to Candida albicans by promoting cytosolic Ca2+ elevation and TBK1 activity. BMC Biology, 2018, 16, 46.	1.7	3
35	Clarifying and Imaging Candida albicans Biofilms. Journal of Visualized Experiments, 2020, , .	0.2	3