Songye Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3648973/publications.pdf

Version: 2024-02-01

126	4,940	40	65
papers	citations	h-index	g-index
132	132	132	2192
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	High-performance semiactive secondary suspension of high-speed trains using negative stiffness and magnetorheological dampers. Vehicle System Dynamics, 2022, 60, 2290-2311.	2.2	11
2	Self-Powered Active Vibration Control: Concept, Modeling, and Testing. Engineering, 2022, 11, 126-137.	3.2	14
3	Probabilistic seismic demand and fragility analysis of a novel mid-rise large-span cassette structure. Bulletin of Earthquake Engineering, 2022, 20, 383-413.	2.3	9
4	Cyclic behavior of iron-based shape memory alloy bars for high-performance seismic devices. Engineering Structures, 2022, 252, 113588.	2.6	16
5	The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review. Renewable and Sustainable Energy Reviews, 2022, 155, 111920.	8.2	45
6	Energy-Regenerative Semiactive Lateral Suspension Control in High-Speed Trains Using Electromagnetic Damper Cum Energy Harvester. IEEE Transactions on Vehicular Technology, 2022, 71, 4801-4812.	3.9	8
7	Global Vibration Intensity Assessment Based on Vibration Source Localization on Construction Sites: Application to Vibratory Sheet Piling. Applied Sciences (Switzerland), 2022, 12, 1946.	1.3	7
8	Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction. Energies, 2022, 15, 2539.	1.6	8
9	Development of novel SMA-based D-type self-centering eccentrically braced frames. Engineering Structures, 2022, 260, 114228.	2.6	18
10	Development of novel track nonlinear energy sinks for seismic performance improvement of offshore wind turbine towers. Mechanical Systems and Signal Processing, 2022, 172, 108975.	4.4	29
11	Wind―and sea waveâ€induced response mitigations of offshore wind turbines using track nonlinear energy sinks. Structural Control and Health Monitoring, 2022, 29, .	1.9	11
12	Performance enhancement of FPS-isolated buildings using an inerter-based damper: Stochastic seismic analysis and optimization. Mechanical Systems and Signal Processing, 2022, 177, 109237.	4.4	5
13	On damage detection of beam structures using multiple types of influence lines. Structures, 2022, 42, 449-465.	1.7	11
14	Two-level performance-based seismic design approach for steel frames with novel self-centring seismic base isolators. Journal of Constructional Steel Research, 2022, 195, 107352.	1.7	7
15	Probability seismic demand and fragility analyses of novel SMA-based self-centring eccentrically braced frames. Smart Materials and Structures, 2022, 31, 095011.	1.8	1
16	Hybrid self-centering companion spines for structural and nonstructural damage control. Engineering Structures, 2022, 266, 114603.	2.6	9
17	Construction Activity Classification Based on Vibration Monitoring Data: A Supervised Deep-Learning Approach with Time Series RandAugment. Journal of Construction Engineering and Management - ASCE, 2022, 148, .	2.0	3
18	Optimal design of tuned inerter dampers with series or parallel stiffness connection for cable vibration control. Structural Control and Health Monitoring, 2021, 28, e2673.	1.9	13

#	Article	IF	CITATIONS
19	Cyclic behavior and deformation mechanism of superelastic SMA U-shaped dampers under in-plane and out-of-plane loadings. Smart Materials and Structures, 2021, 30, 055009.	1.8	12
20	Development of novel self-centering steel coupling beams without beam elongation for earthquake resilience. Engineering Structures, 2021, 232, 111827.	2.6	23
21	Impact source localization and vibration intensity prediction on construction sites. Measurement: Journal of the International Measurement Confederation, 2021, 175, 109148.	2.5	8
22	Accurate Response Sensitivity Analysis of a Thermomechanical Constitutive Model for Superelastic SMAs. Journal of Engineering Mechanics - ASCE, 2021, 147, 04021026.	1.6	1
23	Highâ€performance vibration isolation technique using passive negative stiffness and semiactive damping. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 1034-1055.	6.3	15
24	Energy-Harvesting Adaptive Vibration Damping in High-Speed Train Suspension Using Electromagnetic Dampers. International Journal of Structural Stability and Dynamics, 2021, 21, .	1.5	7
25	Assessment of Ground-Borne Vibration Impact on Nearby Underground Facilities Induced by Ground Surface Excavation. Journal of Construction Engineering and Management - ASCE, 2021, 147, .	2.0	5
26	Resilient Civil Infrastructure under Dynamic Loadings 2020. Shock and Vibration, 2021, 2021, 1-1.	0.3	0
27	Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters. Applied Energy, 2021, 298, 117228.	5.1	26
28	Advanced vibration isolation technique using versatile electromagnetic shunt damper with tunable behavior. Engineering Structures, 2021, 242, 112503.	2.6	13
29	Tunable electromagnetic damper with synthetic impedance and self-powered functions. Mechanical Systems and Signal Processing, 2021, 159, 107822.	4.4	17
30	Dynamic behavior and seismic performance of base-isolated structures with electromagnetic inertial mass dampers: Analytical solutions and simulations. Engineering Structures, 2021, 246, 113072.	2.6	26
31	Adaptive Mode Selection Integrating Kalman Filter for Dynamic Response Reconstruction. Journal of Sound and Vibration, 2021, 515, 116497.	2.1	9
32	Unified strategy for overall impedance optimization in vibration-based electromagnetic energy harvesters. International Journal of Mechanical Sciences, 2020, 165, 105198.	3.6	17
33	Electromagnetic Shunt Damper for Bridge Cable Vibration Mitigation: Full-Scale Experimental Study. Journal of Structural Engineering, 2020, 146, .	1.7	23
34	Developing IoT Sensing System for Construction-Induced Vibration Monitoring and Impact Assessment. Sensors, 2020, 20, 6120.	2.1	19
35	Can we unify vibration control and energy harvesting objectives in energy regenerative tuned mass dampers?. Smart Materials and Structures, 2020, 29, 087002.	1.8	10
36	Development of superelastic SMA angles as seismic-resistant self-centering devices. Engineering Structures, 2020, 218, 110836.	2.6	58

#	Article	IF	Citations
37	Seismic upgrading of multistory steel momentâ€resisting frames by installing shape memory alloy braces: Design method and performance evaluation. Structural Control and Health Monitoring, 2020, 27, e2596.	1.9	14
38	Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects. Renewable Energy, 2020, 153, 740-758.	4.3	25
39	Enhance seismic performance of self-centering concentrically braced frames by using hybrid systems. Bulletin of Earthquake Engineering, 2020, 18, 3995-4015.	2.3	9
40	Experimental Study of Novel Self-Centering Seismic Base Isolators Incorporating Superelastic Shape Memory Alloys. Journal of Structural Engineering, 2020, 146, .	1.7	65
41	High-solidity straight-bladed vertical axis wind turbine: Numerical simulation and validation. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 193, 103960.	1.7	8
42	A comparative study of vibration isolation performance using negative stiffness and inerter dampers. Journal of the Franklin Institute, 2019, 356, 7922-7946.	1.9	60
43	Enhancing the performance of electromagnetic damper cum energy harvester using microcontroller: Concept and experiment validation. Mechanical Systems and Signal Processing, 2019, 134, 106339.	4.4	30
44	Vibration Serviceability Assessment of Pedestrian Bridges Based on Comfort Level. Journal of Performance of Constructed Facilities, 2019, 33, .	1.0	11
45	Earthquake resilient RC walls using shape memory alloy bars and replaceable energy dissipating devices. Smart Materials and Structures, 2019, 28, 065021.	1.8	29
46	High-performance self-centering steel columns with shape memory alloy bolts: Design procedure and experimental evaluation. Engineering Structures, 2019, 182, 446-458.	2.6	71
47	Unify Energy Harvesting and Vibration Control Functions in Randomly Excited Structures with Electromagnetic Devices. Journal of Engineering Mechanics - ASCE, 2019, 145, 04018115.	1.6	37
48	Mechanical and energy-harvesting model for electromagnetic inertial mass dampers. Mechanical Systems and Signal Processing, 2019, 120, 203-220.	4.4	102
49	Two-phase damage detection of beam structures under moving load using multi-scale wavelet signal processing and wavelet finite element model. Applied Mathematical Modelling, 2019, 66, 728-744.	2.2	17
50	Vibration-based energy harvesting circuit using feed-forward control., 2019,,.		0
51	Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations. Applied Energy, 2018, 212, 1107-1125.	5.1	78
52	Issues in design of one-dimensional metamaterials for seismic protection. Soil Dynamics and Earthquake Engineering, 2018, 107, 264-278.	1.9	22
53	Versatile Behaviors of Electromagnetic Shunt Damper With a Negative Impedance Converter. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1415-1424.	3.7	45
54	Dynamic characteristics of stay cables with inerter dampers. Journal of Sound and Vibration, 2018, 423, 287-305.	2.1	87

#	Article	IF	CITATIONS
55	Superelastic SMA U-shaped dampers with self-centering functions. Smart Materials and Structures, 2018, 27, 055003.	1.8	81
56	Seismic Retrofitting of Non-Seismically Designed RC Beam-Column Joints using Buckling-Restrained Haunches: Design and Analysis. Journal of Earthquake Engineering, 2018, 22, 1188-1208.	1.4	21
57	Innovative technologies in manufacturing, mechanics and smart civil infrastructure. International Journal of Smart and Nano Materials, 2018, 9, 261-278.	2.0	4
58	Seismic behavior of self-centering reinforced concrete wall enabled by superelastic shape memory alloy bars. Bulletin of Earthquake Engineering, 2018, 16, 479-502.	2.3	68
59	Damage identification of supporting structures with a moving sensory system. Journal of Sound and Vibration, 2018, 415, 111-127.	2.1	34
60	A Multi-Scale Wavelet Finite Element Model for Damage Detection of Beams Under a Moving Load. International Journal of Structural Stability and Dynamics, 2018, 18, 1850078.	1.5	7
61	Energy regenerative tuned mass dampers in high-rise buildings. Structural Control and Health Monitoring, 2018, 25, e2072.	1.9	51
62	Resilient Civil Infrastructure under Dynamic Loadings. Shock and Vibration, 2018, 2018, 1-1.	0.3	0
63	Damage quantification of beam structures using deflection influence lines. Structural Control and Health Monitoring, 2018, 25, e2242.	1.9	43
64	Adaptive Reconstruction of a Dynamic Force Using Multiscale Wavelet Shape Functions. Shock and Vibration, 2018, 2018, 1-11.	0.3	4
65	Field measurement, model updating, and response prediction of a large-scale straight-bladed vertical axis wind turbine structure. Measurement: Journal of the International Measurement Confederation, 2018, 130, 57-70.	2.5	9
66	Cyclic tension–compression behavior of superelastic shape memory alloy bars with buckling-restrained devices. Construction and Building Materials, 2018, 186, 103-113.	3.2	77
67	Simulation of support settlement and cable slippage by using a long-span suspension bridge testbed. Structure and Infrastructure Engineering, 2017, 13, 401-415.	2.0	4
68	Wavelet-based multi-scale finite element modeling and modal identification for structural damage detection. Advances in Structural Engineering, 2017, 20, 1185-1195.	1.2	8
69	Baseline-free damage localization method for statically determinate beam structures using dual-type response induced by quasi-static moving load. Journal of Sound and Vibration, 2017, 400, 58-70.	2.1	35
70	Damage detection of beam structures using quasi-static moving load induced displacement response. Engineering Structures, 2017, 145, 70-82.	2.6	69
71	Experimental Study on Passive Negative Stiffness Damper for Cable Vibration Mitigation. Journal of Engineering Mechanics - ASCE, 2017, 143, .	1.6	78
72	Simulation and optimization of magnetic negative stiffness dampers. Sensors and Actuators A: Physical, 2017, 259, 14-33.	2.0	70

#	Article	IF	Citations
73	Performance Comparison between Passive Negative-Stiffness Dampers and Active Control in Cable Vibration Mitigation. Journal of Bridge Engineering, 2017, 22, .	1.4	41
74	Performance-based seismic design of self-centering steel frames with SMA-based braces. Engineering Structures, 2017, 130, 67-82.	2.6	239
75	Shake table test and numerical study of selfâ€centering steel frame with SMA braces. Earthquake Engineering and Structural Dynamics, 2017, 46, 117-137.	2.5	230
76	Dynamic behavior of stay cables with passive negative stiffness dampers. Smart Materials and Structures, 2016, 25, 075044.	1.8	70
77	Moving-window extended Kalman filter for structural damage detection with unknown process and measurement noises. Measurement: Journal of the International Measurement Confederation, 2016, 88, 428-440.	2.5	20
78	Multi-type sensor placement and response reconstruction for structural health monitoring of long-span suspension bridges. Science Bulletin, 2016, 61, 313-329.	4.3	53
79	A Laser-Based Fiber Bragg Grating Ultrasonic Sensing System for Structural Health Monitoring. IEEE Photonics Technology Letters, 2016, 28, 2573-2576.	1.3	45
80	Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping. Smart Materials and Structures, 2016, 25, 065011.	1.8	46
81	Moving load-induced response of damaged beam and its application in damage localization. JVC/Journal of Vibration and Control, 2016, 22, 3601-3617.	1.5	59
82	High-mode effects on seismic performance of multi-story self-centering braced steel frames. Journal of Constructional Steel Research, 2016, 119, 133-143.	1.7	135
83	Electromagnetic energy harvesting from structural vibrations during earthquakes. Smart Structures and Systems, 2016, 18, 449-470.	1.9	39
84	Probabilistic deterioration model of high-strength steel wires and its application to bridge cables. Structure and Infrastructure Engineering, 2015, 11, 1240-1249.	2.0	46
85	Damage Detection in Long Suspension Bridges Using Stress Influence Lines. Journal of Bridge Engineering, 2015, 20, .	1.4	68
86	Magnetic negative stiffness dampers. Smart Materials and Structures, 2015, 24, 072002.	1.8	100
87	Harvesting energy via electromagnetic damper: Application to bridge stay cables. Journal of Intelligent Material Systems and Structures, 2015, 26, 3-19.	1.4	77
88	Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model. Structural Engineering and Mechanics, 2015, 54, 239-256.	1.0	9
89	Experimental Study on Impact-Induced Damage Detection Using an Improved Extended Kalman Filter. International Journal of Structural Stability and Dynamics, 2014, 14, 1440007.	1.5	4
90	Incremental Dynamic Analysis of Highway Bridges with Novel Shape Memory Alloy Isolators. Advances in Structural Engineering, 2014, 17, 429-438.	1.2	27

#	Article	IF	CITATIONS
91	Impact of Construction-Induced Vibration on Vibration-Sensitive Medical Equipment: A Case Study. Advances in Structural Engineering, 2014, 17, 907-920.	1.2	11
92	Locate Damage in Long-Span Bridges Based on Stress Influence Lines and Information Fusion Technique. Advances in Structural Engineering, 2014, 17, 1089-1102.	1.2	20
93	Characterization of cyclic properties of superelastic monocrystalline Cu–Al–Be SMA wires for seismic applications. Construction and Building Materials, 2014, 72, 219-230.	3.2	70
94	Cooling Time Estimation of Newly Placed Hot-Mix Asphalt Pavement in Different Weather Conditions. Journal of Construction Engineering and Management - ASCE, 2014, 140, .	2.0	22
95	Damage detection of long-span bridges using stress influence lines incorporated control charts. Science China Technological Sciences, 2014, 57, 1689-1697.	2.0	19
96	Dual-type sensor placement for multi-scale response reconstruction. Mechatronics, 2014, 24, 376-384.	2.0	27
97	Structural Damage Detection Using Auto/Cross-Correlation Functions Under Multiple Unknown Excitations. International Journal of Structural Stability and Dynamics, 2014, 14, 1440006.	1.5	32
98	A wavelet finite element-based adaptive-scale damage detection strategy. Smart Structures and Systems, 2014, 14, 285-305.	1.9	5
99	2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renewable Energy, 2013, 51, 317-330.	4.3	177
100	Progressive damage detection based on multi-scale wavelet finite element model: numerical study. Computers and Structures, 2013, 125, 177-186.	2.4	20
101	Multi-Type Sensor Placement for Multi-Scale Response Reconstruction. Advances in Structural Engineering, 2013, 16, 1779-1797.	1.2	35
102	Loading rate effect on superelastic SMA-based seismic response modification devices. Earthquake and Structures, 2013, 4, 607-627.	1.0	14
103	Dynamic analogy between an electromagnetic shunt damper and a tuned mass damper. Smart Materials and Structures, 2013, 22, 115018.	1.8	40
104	ADAPTIVE-SCALE DAMAGE DETECTION FOR FRAME STRUCTURES USING BEAM-TYPE WAVELET FINITE ELEMENT: EXPERIMENTAL VALIDATION. Journal of Earthquake and Tsunami, 2013, 07, 1350024.	0.7	2
105	Structural health monitoring of wind turbine blade using fiber Bragg grating sensors and fiber optic rotary joint. Proceedings of SPIE, 2012, , .	0.8	10
106	An experimental study on self-powered vibration control and monitoring system using electromagnetic TMD and wireless sensors. Sensors and Actuators A: Physical, 2012, 180, 166-176.	2.0	72
107	Testbed for Structural Health Monitoring of Long-Span Suspension Bridges. Journal of Bridge Engineering, 2012, 17, 896-906.	1.4	22
108	Long-term condition assessment of suspenders under traffic loads based on structural monitoring system: Application to the Tsing Ma Bridge. Structural Control and Health Monitoring, 2012, 19, 82-101.	1.9	93

#	Article	IF	Citations
109	Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing. Engineering Structures, 2012, 34, 198-212.	2.6	162
110	INTEGRATED OPTIMAL PLACEMENT OF DISPLACEMENT TRANSDUCERS AND STRAIN GAUGES FOR BETTER ESTIMATION OF STRUCTURAL RESPONSE. International Journal of Structural Stability and Dynamics, 2011, 11, 581-602.	1.5	51
111	DYNAMIC STRAIN SENSING IN A LONG-SPAN SUSPENSION BRIDGE USING FIBER BRAGG GRATING SENSORS. , 2011, , .		2
112	Displacement-based design approach for highway bridges with SMA isolators. Smart Structures and Systems, 2011, 8, 173-190.	1.9	13
113	Threeâ€dimensional vibration control of highâ€tech facilities against earthquakes and microvibration using hybrid platform. Earthquake Engineering and Structural Dynamics, 2010, 39, 615-634.	2.5	3
114	Seismic performance of benchmark base-isolated bridges with superelastic Cu-Al-Be restraining damping device. Structural Control and Health Monitoring, 2009, 16, 668-685.	1.9	76
115	Seismic Analysis of Concentrically Braced Frame Systems with Self-Centering Friction Damping Braces. Journal of Structural Engineering, 2008, 134, 121-131.	1.7	247
116	Performance Based Seismic Design of Steel Braced Frame System with Self-Centering Friction Damping Brace. , 2008, , .		13
117	Seismic Response Control of Building Structures with Superelastic Shape Memory Alloy Wire Dampers. Journal of Engineering Mechanics - ASCE, 2008, 134, 240-251.	1.6	64
118	Mechanical properties of superelastic Cu–Al–Be wires at cold temperatures for the seismic protection of bridges. Smart Materials and Structures, 2008, 17, 025008.	1.8	39
119	A wavelet-based structural damage assessment approach with progressively downloaded sensor data. Smart Materials and Structures, 2008, 17, 015020.	1.8	3
120	A shape memory alloy-based reusable hysteretic damper for seismic hazard mitigation. Smart Materials and Structures, 2007, 16, 1603-1613.	1.8	125
121	A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence. Smart Materials and Structures, 2007, 16, 1696-1707.	1.8	86
122	Seismic behaviour of self-centring braced frame buildings with reusable hysteretic damping brace. Earthquake Engineering and Structural Dynamics, 2007, 36, 1329-1346.	2.5	144
123	Damage quantification of beam structures using deflection influence line changes and sparse regularization. Advances in Structural Engineering, 0, , 136943322199248.	1.2	12
124	Stochastic seismic analysis of base-isolated structures with electromagnetic inertial mass dampers considering different soil conditions. Bulletin of Earthquake Engineering, $0, 1$.	2.3	4
125	Fiber Bragg Grating Sensing System for Detection of Laser-Induced Ultrasonics in Application to Railway. , 0, , .		0
126	Probabilistic Seismic Capacity Analysis of a Novel Mid-rise Large-span Cassette Structure Using Multidirectional Pushover Method. Journal of Earthquake Engineering, 0, , 1-26.	1.4	4