Artur Pinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3648782/publications.pdf

Version: 2024-02-01

840776 677142 22 529 11 22 h-index citations g-index papers 23 23 23 664 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Organic micropollutants paracetamol and ibuprofenâ€"toxicity, biodegradation, and genetic background of their utilization by bacteria. Environmental Science and Pollution Research, 2018, 25, 21498-21524.	5.3	168
2	Defining the Genetic Basis of Plant–Endophytic Bacteria Interactions. International Journal of Molecular Sciences, 2019, 20, 1947.	4.1	97
3	Genome Mining and Evaluation of the Biocontrol Potential of Pseudomonas fluorescens BRZ63, a New Endophyte of Oilseed Rape (Brassica napus L.) against Fungal Pathogens. International Journal of Molecular Sciences, 2020, 21, 8740.	4.1	37
4	A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain. International Biodeterioration and Biodegradation, 2020, 149, 104919.	3.9	26
5	Comparative Genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila Revealed Characteristic Features of Both Species. International Journal of Molecular Sciences, 2020, 21, 4922.	4.1	21
6	Degradation of diclofenac by new bacterial strains and its influence on the physiological status of cells. Journal of Hazardous Materials, 2021, 403, 124000.	12.4	20
7	Selecting Bacteria Candidates for the Bioaugmentation of Activated Sludge to Improve the Aerobic Treatment of Landfill Leachate. Water (Switzerland), 2020, 12, 140.	2.7	20
8	Diclofenac Degradationâ€"Enzymes, Genetic Background and Cellular Alterations Triggered in Diclofenac-Metabolizing Strain Pseudomonas moorei KB4. International Journal of Molecular Sciences, 2020, 21, 6786.	4.1	17
9	Hydroxyproline-Rich Glycoproteins as Markers of Temperature Stress in the Leaves of Brachypodium distachyon. International Journal of Molecular Sciences, 2019, 20, 2571.	4.1	16
10	Adaptation of phenol-degrading Pseudomonas putida KB3 to suboptimal growth condition: A focus on degradative rate, membrane properties and expression of xylE and cfaB genes. Ecotoxicology and Environmental Safety, 2021, 221, 112431.	6.0	15
11	Changes in the Cell Wall Proteome of Leaves in Response to High Temperature Stress in Brachypodium distachyon. International Journal of Molecular Sciences, 2021, 22, 6750.	4.1	14
12	Analysis of the Bioaugmentation Potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the Sequencing Batch Reactors Fed with the Phenolic Landfill Leachate. Water (Switzerland), 2020, 12, 906.	2.7	13
13	Effects of Low Concentration of Selected Analgesics and Successive Bioaugmentation of the Activated Sludge on Its Activity and Metabolic Diversity. Water (Switzerland), 2020, 12, 1133.	2.7	12
14	Cell Wall Epitopes and Endoploidy as Reporters of Embryogenic Potential in Brachypodium Distachyon Callus Culture. International Journal of Molecular Sciences, 2018, 19, 3811.	4.1	10
15	A CRISPR/Cas9-Based Mutagenesis Protocol for Brachypodium distachyon and Its Allopolyploid Relative, Brachypodium hybridum. Frontiers in Plant Science, 2020, 11, 614.	3.6	9
16	Stability and instability processes in the calli of Fagopyrum tataricum that have different morphogenic potentials. Plant Cell, Tissue and Organ Culture, 2019, 137, 343-357.	2.3	8
17	Genome Mining Revealed a High Biosynthetic Potential for Antifungal Streptomyces sp. S-2 Isolated from Black Soot. International Journal of Molecular Sciences, 2020, 21, 2558.	4.1	7
18	To Be or Not to Be Expressed: The First Evidence of a Nucleolar Dominance Tissue-Specificity in Brachypodium hybridum. Frontiers in Plant Science, 2021, 12, 768347.	3.6	7

#	Article	IF	CITATIONS
19	3,4-Dehydro-L-proline Induces Programmed Cell Death in the Roots of Brachypodium distachyon. International Journal of Molecular Sciences, 2021, 22, 7548.	4.1	4
20	Non-Targeted Metabolite Profiling Reveals Host Metabolomic Reprogramming during the Interaction of Black Pepper with Phytophthora capsici. International Journal of Molecular Sciences, 2021, 22, 11433.	4.1	4
21	Comparison of mass spectrometry data and bioinformatics predictions to assess the bona fide localization of proteins identified in cell wall proteomics studies. Plant Science, 2021, 310, 110979.	3.6	3
22	GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA AND THEIR POTENTIAL IN ENHANCING PHYTOREMEDIATION EFFICIENCY. Journal of Ecological Engineering, 2017, 18, 152-159.	1.1	1