Anastasios G Sextos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3648775/publications.pdf

Version: 2024-02-01

212478 242451 2,662 116 28 47 citations h-index g-index papers 129 129 129 1832 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reconnaissance of 2020ÂM 7.0 Samos Island (Aegean Sea) earthquake. Bulletin of Earthquake Engineering, 2022, 20, 7707-7712.	2.3	9
2	Liquefaction potential for the Kathmandu Valley, Nepal: a sensitivity study. Bulletin of Earthquake Engineering, 2022, 20, 25-51.	2.3	8
3	Emergency response, intervention, and societal recovery in Greece and Turkey after the 30th October 2020, MW = 7.0, Samos (Aegean Sea) earthquake. Bulletin of Earthquake Engineering, 2022, 20, 7933-	-79 3 3.	10
4	Challenges and perspectives for integral bridges in the UK: PLEXUS small-scale experiments. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction, 2022, 175, 27-43.	1.1	4
5	ANN-based rapid seismic fragility analysis for multi-span concrete bridges. Structures, 2022, 41, 804-817.	1.7	11
6	Analytical fragility curves for masonry school building portfolios in Nepal. Bulletin of Earthquake Engineering, 2021, 19, 1121-1150.	2.3	30
7	Shake table testing of a rocking podium: Results of a blind prediction contest. Earthquake Engineering and Structural Dynamics, 2021, 50, 1043-1062.	2.5	38
8	Empirical seismic fragility models for Nepalese school buildings. Natural Hazards, 2021, 105, 339-362.	1.6	21
9	Dataset from the shake table tests of a rocking podium structure. Earthquake Spectra, 2021, 37, 2107-2125.	1.6	8
10	Seismic assessment of wind turbines: How crucial is rotor-nacelle-assembly numerical modeling?. Soil Dynamics and Earthquake Engineering, 2021, 141, 106483.	1.9	15
11	Implications of high-frequency decay parameter, "κ-kappaâ€; in the estimation of kinematic soil-structure interaction effects. Soil Dynamics and Earthquake Engineering, 2021, 144, 106665.	1.9	4
12	Hybrid Simulation of Structure-Pipe-Structure Interaction within a Gas Processing Plant. Journal of Pipeline Systems Engineering and Practice, 2021, 12, .	0.9	4
13	Innovations in earthquake risk reduction for resilience: Recent advances and challenges. International Journal of Disaster Risk Reduction, 2021, 60, 102267.	1.8	72
14	Financial assessment of incremental seismic retrofitting of Nepali stone-masonry buildings. International Journal of Disaster Risk Reduction, 2021, 60, 102297.	1.8	11
15	Data set from shake table tests of free-standing rocking bodies. Earthquake Spectra, 2021, 37, 2971-2987.	1.6	9
16	Low-cost hybrid design of masonry structures for developing countries: Shaking table tests. Soil Dynamics and Earthquake Engineering, 2021, 146, 106675.	1.9	32
17	Probabilistic loss assessment of curved bridges considering the effect of ground motion directionality. Earthquake Engineering and Structural Dynamics, 2021, 50, 3623-3645.	2.5	11
18	Experimental investigation of a highly efficient, low-cost PVC-Rollers Sandwich (PVC-RS) seismic isolation. Structures, 2021, 33, 1590-1602.	1.7	16

#	Article	IF	Citations
19	Integral abutment bridges: Investigation of seismic soilâ€structure interaction effects by shaking table testing. Earthquake Engineering and Structural Dynamics, 2021, 50, 1517-1538.	2.5	32
20	Seismic fragility of buried steel natural gas pipelines due to axial compression at geotechnical discontinuities. Bulletin of Earthquake Engineering, 2020, 18, 837-906.	2.3	16
21	Out-of-plane closed-form solution for the seismic assessment of unreinforced masonry schools in Nepal. Engineering Structures, 2020, 203, 109548.	2.6	30
22	Seismic vulnerability of offshore wind turbines to pulse and nonâ€pulse records. Earthquake Engineering and Structural Dynamics, 2020, 49, 24-50.	2.5	42
23	Large-scale experimental investigation of a low-cost PVC  sand-wich' (PVC-s) seismic isolation for developing countries. Earthquake Spectra, 2020, 36, 1886-1911.	1.6	35
24	Finite element modeling optimization of wind turbine blades from an earthquake engineering perspective. Engineering Structures, 2020, 222, 111105.	2.6	10
25	Analytical investigation of the effect of a deformable sliding layer on the dynamic response of seismically isolated structures. Structures, 2020, 27, 2426-2436.	1.7	19
26	Analytical expressions relating free-field and foundation ground motions in buildings with basement, considering soil-structure interaction. Engineering Structures, 2020, 216, 110757.	2.6	14
27	Theory and experimental verification of a resultant response-based method for assessing the critical seismic excitation direction of curved bridges. Engineering Structures, 2020, 216, 110713.	2.6	10
28	Physical Modeling of the Seismic Response of Gas Pipelines in Laterally Inhomogeneous Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	8
29	Rigorous vehicle-soil-track simulation of high-speed rail through optimization-based model order reduction. Transportation Geotechnics, 2020, 23, 100350.	2.0	6
30	The SAFER geodatabase for the Kathmandu Valley: Geotechnical and geological variability. Earthquake Spectra, 2020, 36, 1549-1569.	1.6	12
31	Optimal intensity measures for the structural assessment of buried steel natural gas pipelines due to seismically-induced axial compression at geotechnical discontinuities. Soil Dynamics and Earthquake Engineering, 2020, 131, 106030.	1.9	27
32	Simplified design of bridges for multiple-support earthquake excitation. Soil Dynamics and Earthquake Engineering, 2020, 131, 106013.	1.9	10
33	Risk assessment of cables vibration-suppressed with tuned-inerter dampers. Engineering Structures, 2020, 222, 111127.	2.6	4
34	Influence of structure–foundation–soil interaction on ground motions recorded within buildings. Bulletin of Earthquake Engineering, 2019, 17, 5867-5895.	2.3	14
35	A sand-rubber deformable granular layer as a low-cost seismic isolation strategy in developing countries: Experimental investigation. Soil Dynamics and Earthquake Engineering, 2019, 125, 105731.	1.9	91
36	A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 2: Pipe analysis aspects. Tunnelling and Underground Space Technology, 2019, 92, 103056.	3.0	34

#	Article	IF	Citations
37	Selection of earthquake ground motions for multiple objectives using genetic algorithms. Engineering Structures, 2019, 187, 414-427.	2.6	26
38	A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 1: Fragility relations and implemented seismic intensity measures. Tunnelling and Underground Space Technology, 2019, 86, 279-296.	3.0	45
39	Impact of earthquake-induced bridge damage and time evolving traffic demand on the road network resilience. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6, 35-48.	2.0	24
40	Integrated seismic risk and resilience assessment of roadway networks in earthquake prone areas. Bulletin of Earthquake Engineering, 2019, 17, 181-210.	2.3	86
41	Can a buried gas pipeline experience local buckling during earthquake ground shaking?. Soil Dynamics and Earthquake Engineering, 2019, 116, 511-529.	1.9	38
42	Implications of subsoil-foundation modelling on the dynamic characteristics of a monitored bridge. Structure and Infrastructure Engineering, 2019, 15, 180-192.	2.0	4
43	Intercontinental Hybrid Simulation for the Assessment of a Three-Span R/C Highway Overpass. Journal of Earthquake Engineering, 2019, 23, 1194-1215.	1.4	9
44	SHAKING TABLE TESTS ON AN INTEGRAL ABUTMENT BRIDGE MODEL: PRELIMINARY RESULTS., 2019,,.		3
45	THE SEISMIC RESPONSE OF NATURAL GAS PIPELINES BURIED IN DISCONTINUOUS PERMAFROST UNDER VERTICALLY PROPAGATING SHEAR WAVES: PARAMETRIC ANALYSIS. , 2019, , .		0
46	Safety of buried steel natural gas pipelines under earthquake-induced ground shaking: A review. Soil Dynamics and Earthquake Engineering, 2018, 106, 254-277.	1.9	74
47	Structure-specific selection of earthquake ground motions for the reliable design and assessment of structures. Bulletin of Earthquake Engineering, 2018, 16, 583-611.	2.3	19
48	Build-X: Expert system for seismic analysis and assessment of 3D buildings using OpenSees. Advances in Engineering Software, 2018, 116, 23-35.	1.8	17
49	A frequencyâ€dependent and intensityâ€dependent macroelement for reduced order seismic analysis of soilâ€structure interacting systems. Earthquake Engineering and Structural Dynamics, 2018, 47, 2172-2194.	2.5	19
50	Reconnaissance of 2016 Central Italy Earthquake Sequence. Earthquake Spectra, 2018, 34, 1547-1555.	1.6	36
51	Scenario-Based Seismic Risk Assessment for Buried Transmission Gas Pipelines at Regional Scale. Journal of Pipeline Systems Engineering and Practice, 2018, 9, .	0.9	25
52	Editorial: Civil-Comp - Part 2. Advances in Engineering Software, 2018, 120, 1-3.	1.8	1
53	Local Site Effects and Incremental Damage of Buildings during the 2016 Central Italy Earthquake Sequence. Earthquake Spectra, 2018, 34, 1639-1669.	1.6	78
54	Anti-symmetric mode excitation and seismic response of base-isolated bridges under asynchronous input motion. Soil Dynamics and Earthquake Engineering, 2018, 113, 148-161.	1.9	14

#	Article	IF	Citations
55	Seismically induced uplift effects on nuclear power plants. Part 1: Containment building rocking spectra. Nuclear Engineering and Design, 2017, 318, 276-287.	0.8	25
56	Seismically induced uplift effects on nuclear power plants. Part 2: Demand on internal equipment. Nuclear Engineering and Design, 2017, 318, 288-296.	0.8	13
57	Alternative Solutions to Preserve the Revealed Byzantine Antiquities at the Venizelou Metro Station of Thessaloniki. International Journal of Architectural Heritage, 2017, 11, 539-553.	1.7	3
58	Efficiency of alternative intensity measures for the seismic assessment of monolithic free-standing columns. Bulletin of Earthquake Engineering, 2017, 15, 1635-1659.	2.3	30
59	Rotational seismic excitation effects on CIDH pile-supported bridge piers. Engineering Structures, 2017, 138, 181-194.	2.6	7
60	Soil-structure interaction effects in analysis of seismic fragility of bridges using an intensity-based ground motion selection procedure. Engineering Structures, 2017, 151, 366-380.	2.6	67
61	Influence of frequencyâ€dependent soil–structure interaction on the fragility of R/C bridges. Earthquake Engineering and Structural Dynamics, 2017, 46, 139-158.	2.5	27
62	Influence of Seismic Wave Angle of Incidence Over the Response of Long Curved Bridges Considering Soil-Structure Interaction. Lecture Notes in Civil Engineering, 2017, , 1-17.	0.3	6
63	An Intercontinental Hybrid Simulation Experiment for the Purposes of Seismic Assessment of a Three-Span R/C Bridge. Lecture Notes in Civil Engineering, 2017, , 77-88.	0.3	1
64	SEISMIC RESILIENCE ASSESSMENT OF THE WESTERN MACEDONIA HIGHWAY NETWORK IN GREECE. , 2017, , .		1
65	Energy Methods for Assessing Dynamic SSI Response in Buildings. Lecture Notes in Civil Engineering, 2017, , 237-257.	0.3	0
66	EXPANSION OF THE LUMPED PARAMETER METHOD TO NONLINEAR, SOIL-STRUCTURE INTERACTING DYNAMIC SYSTEMS BY MEANS OF A MULTI-OBJECTIVE OPTIMIZATION ALGORITHM. , 2017, , .		0
67	Soil–Bridge System Stiffness Identification through Field and Laboratory Measurements. Journal of Bridge Engineering, 2016, 21, .	1.4	8
68	EC8-Compliant Seismic Analysis and Design Examples. Geotechnical, Geological and Earthquake Engineering, 2016, , 247-451.	0.1	1
69	Design charts for rectangular R/C columns under biaxial bending: A historical review toward a Eurocode-2 compliant update. Engineering Structures, 2016, 115, 196-206.	2.6	7
70	Eurocode-Compliant Seismic Analysis and Design of R/C Buildings. Geotechnical, Geological and Earthquake Engineering, 2016, , .	0.1	8
71	Multiâ€angle, multiâ€damage fragility curves for seismic assessment of bridges. Earthquake Engineering and Structural Dynamics, 2015, 44, 2281-2301.	2.5	42
72	A timeâ€domain seismic SSI analysis method for inelastic bridge structures through the use of a frequencyâ€dependent lumped parameter model. Earthquake Engineering and Structural Dynamics, 2015, 44, 2137-2156.	2.5	39

#	Article	IF	Citations
73	Inelastic spectra to predict period elongation of structures under earthquake loading. Earthquake Engineering and Structural Dynamics, 2015, 44, 1765-1782.	2.5	27
74	Probabilistic Assessment of Abutment-Embankment Stiffness and Implications in the Predicted Performance of Short Bridges. Journal of Earthquake Engineering, 2015, 19, 822-846.	1.4	20
75	Multiple support seismic excitation of the Evripos bridge based on free-field and on-structure recordings. Structure and Infrastructure Engineering, 2015, 11, 1510-1523.	2.0	22
76	Rotational excitation of bridges supported on pile groups in soft or liquefiable soil deposits. Computers and Structures, 2015, 155, 54-66.	2.4	13
77	Field Experiments for Monitoring the Dynamic Soil–Structure–Foundation Response of a Bridge-Pier Model Structure at a Test Site. Journal of Structural Engineering, 2015, 141, .	1.7	13
78	Selection of Ground Motions for Response History Analysis. , 2015, , 3239-3247.		1
79	MODEL UPDATING OF A BRIDGE-FOUNDATION-SOIL SYSTEM BASED ON AMBIENT VIBRATION DATA. , 2015, , .		1
80	MULTIPLE SUPPORT EXCITATION OF A BRIDGE BASED ON BEM ANALYSIS OF THE SUBSOIL-STRUCTURE-INTERACTION PHENOMENON. , 2015, , .		2
81	ICT Applications for New Generation Seismic Design, Construction and Assessment of Bridges. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2014, 24, 173-183.	0.5	3
82	Seismic Risk of Inter-urban Transportation Networks. Procedia Economics and Finance, 2014, 18, 263-270.	0.6	7
83	Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings. Earthquake and Structures, 2014, 6, 71-87.	1.0	11
84	A paperless course on structural engineering programming: investing in educational technology in the times of the Greek financial recession. European Journal of Engineering Education, 2014, 39, 18-30.	1.5	2
85	Selection of Ground Motions for Response History Analysis. , 2014, , 1-10.		2
86	A matlabâ€based educational tool for the seismic design of flexibly supported RC buildings. Computer Applications in Engineering Education, 2014, 22, 442-451.	2.2	13
87	Prediction of inelastic response periods of buildings based on intensity measures and analytical model parameters. Engineering Structures, 2014, 71, 161-177.	2.6	32
88	ROBUSTNESS, REPEATABILITY AND RESILIENCE OF INTERCONTINENTAL DISTRIBUTED COMPUTING FOR THE PURPOSES OF SEISMIC ASSESSMENT OF BRIDGES. , 2014 , , .		0
89	ASSESSMENT OF EC 8 PROCEDURES FOR THE ASYNCHRONOUS EXCITATION OF BRIDGES BASED ON NUMERICAL ANALYSIS AND RECORDED DATA. , 2014, , .		0
90	BRIDGE-WIZARD: EXPERT SYSTEM FOR FINITE ELEMENT MODELING AND POST PROCESSING OF BRIDGE STRUCTURES. , 2014, , .		0

#	Article	IF	CITATIONS
91	Effect of soil–structure interaction and spatial variability of ground motion on seismic risk assessment of bridges. , 2013, , 597-625.		1
92	ISSARS: An integrated software environment for structure-specific earthquake ground motion selection. Advances in Engineering Software, 2013, 58, 70-85.	1.8	55
93	Modelling of Bridges for Inelastic Analysis. Geotechnical, Geological and Earthquake Engineering, 2012, , 5-84.	0.1	2
94	A knowledge-based software for the preliminary design of seismically isolated bridges. Bulletin of Earthquake Engineering, 2012, 10, 1029-1047.	2.3	8
95	Tests on composite slabs and evaluation of relevant Eurocode 4 provisions. Steel and Composite Structures, 2012, 13, 571-586.	1.3	2
96	On the Evaluation of EC8-Based Record Selection Procedures for the Dynamic Analysis of Buildings and Bridges. Computational Methods in Applied Sciences (Springer), 2011, , 41-65.	0.1	1
97	A Multi-Platform Simulation Alternative for the Performance-Based Design of Interactive Soil-Bridge Systems., 2011,, 289-307.		2
98	EC8-based earthquake record selection procedure evaluation: Validation study based on observed damage of an irregular R/C building. Soil Dynamics and Earthquake Engineering, 2011, 31, 583-597.	1.9	41
99	Problems in Pushover Analysis of Bridges Sensitive to Torsion. Computational Methods in Applied Sciences (Springer), 2011, , 99-122.	0.1	5
100	Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective. Soil Dynamics and Earthquake Engineering, 2010, 30, 157-169.	1.9	359
101	Sensitivity of the Seismic Response of Long Medieval Walls to Earthquake and Material Uncertainty. Advanced Materials Research, 2010, 133-134, 689-695.	0.3	0
102	Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city - structural aspects. Earthquake and Structures, 2010, 1, 197-214.	1.0	20
103	Information and Communication Technologies in Earthquake Engineering. Computational Technology Reviews, 2010, 4, 193-224.	0.6	1
104	Seismic assessment of bridges accounting for nonlinear material and soil response, and varying boundary conditions. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 195-208.	0.1	12
105	Evaluation of seismic response of bridges under asynchronous excitation and comparisons with Eurocode 8-2 provisions. Bulletin of Earthquake Engineering, 2009, 7, 519-545.	2.3	50
106	Back Analysis of Thessaloniki Byzantine Land Walls as a Means to Assess its Seismic History. International Journal of Architectural Heritage, 2009, 3, 339-361.	1.7	2
107	Single and multi-platform simulation of linear and non-linear bridge-soil systems. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 225-239.	0.1	3
108	Computerâ€Aided Pre―and Postâ€Earthquake Assessment of Buildings Involving Database Compilation, GIS Visualization, and Mobile Data Transmission. Computer-Aided Civil and Infrastructure Engineering, 2008, 23, 59-73.	6.3	26

7

#	Article	IF	CITATIONS
109	Effect of Asynchronous Earthquake Motion on Complex Bridges. I: Methodology and Input Motion. Journal of Bridge Engineering, 2008, 13, 158-165.	1.4	33
110	Extension of modal pushover analysis to seismic assessment of bridges. Earthquake Engineering and Structural Dynamics, 2006, 35, 1269-1293.	2.5	94
111	Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomena. Part 1: Methodology and analytical tools. Earthquake Engineering and Structural Dynamics, 2003, 32, 607-627.	2.5	105
112	Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomena. Part 2: Parametric study. Earthquake Engineering and Structural Dynamics, 2003, 32, 629-652.	2.5	98
113	Effect of Foundation Type and Compliance on Seismic Response of RC Bridges. Journal of Bridge Engineering, 2001, 6, 120-130.	1.4	26
114	Seismic Performance Assessment of Existing Steel Buildings: A Case Study. Key Engineering Materials, 0, 763, 1067-1076.	0.4	9
115	Protection of Buildings from Earthquake-Induced Vibration. , 0, , 1393-1403.		2
116	Improved correlation between foundation and freeâ€field ground motions through strong motion recordings and kinematic soil–structure interaction analyses. Earthquake Engineering and Structural Dynamics, 0, , .	2.5	0